High Temperature Superconducting Magnetic Levitation

(やまだぃちぅ) #1

366 Ë 9 HTS Maglev bearing and flywheel energy storage system


[41]Murakami M. Processing and Applications of Bulk RE–Ba–Cu–O Superconductors. Int J Appl
Ceram Tec. 2007;4(3):225–241.
[42]Koyama F, Akiyama S, Murakami M. Developments of superconducting mixers for medical
applications. Supercond Sci Technol. 2006;19(7):S572–S574.
[43]Wongsatanawarid A, Suzuki A, Seki H, Murakami M. Magnetic torque transferring study for
bulk High-Tcsuperconductors and permanent magnets. J Phys Conf Ser. 2009;153:012035.
[44]Lin QX, Jiang DH, Ma GT, Wang JS, Deng ZG, Zheng J, Wang SY. Research of radial high
temperature superconducting magnetic bearings for cryogenic liquid pumps. IEEE Trans Appl
Supercond. 2012;22(3):5201604.
[45]Werfel FN, Floegel-Delor U, Rothfeld R, Riedel T, Goebel B, Wippich D, Schirrmeister P,
Koenig R. Next generation of HTS magnetic application: HTS bulk and coil interaction. J Phys
Conf Ser. 2014;507:032055.
[46]Patel A, Palka R, Glowacki BA. New bulk – bulk superconducting bearing concept using
additional permanent magnets. Przeglad Elektrotechniczny. 2012;88(6):108–110.
[47]Koshizuka N, Ishikawa F, Nasu H, Murakami M, Matsunaga K, Saito S, Saito O, Nakamura Y,
Yamamoto H, Takahata R, Oka T, Ikezawa H, Tomita M. Present status of R&D on
superconducting magnetic bearing technologies for flywheel energy storage system.
Physica C. 2002;378–381:11–17.
[48]Matsunaga K, Tomita M, Yamachi N, Iida K, Yoshioka J, Isono M, Hirose M, Nasu H, Kameno H,
Kubo A, Takahata R, Kitai N, Yamamoto H, Nakamura Y, Koshizuka N, Murakami M. Fabrication
and evaluation of superconducting bearing module for 10 kWh flywheel. Physica C. 2002;
378–381:883–887.
[49]Seino H, Nagashima K, Tanaka Y, Nakauchi M. Study of superconducting magnetic
bearing applicable to the flywheel energy storage system that consist of HTS-bulks and
superconducting-coils. J Phys Conf Ser. 2010;234:032052.
[50]Dai XJ, Li YL, Yu H. Design of high specific energy density flywheel. Journal of Tsinghua
Universigy (Science and Technology). 2008;48(3):379–382. (In Chinese).
[51]Kousksou T, Bruel P, Jamil A, ElRhafiki T, Zeraouli Y. Energy storage: Applications and
challenges. Solar Energy Materials & Solar Cells. 2014;120:59–80.
[52]Tang SQ, Liao DX, Wu ZJ. Key technology and prospects on the electric vehicles. Mechanical
Science and Technology. 2003;22:189–244. (In Chinese).
[53]Colin Tarrant. Hong Kong Citybus-UPT tr100 trial success. (http://202.193.70.166/mirror/
Materials0322115.pdf).
[54]Wen SB, Jiang SY. Application study of flywheel energy storage system in automobile.
Machinery Design and Manufacture. 2010;12:82–84. (In Chinese)
[55]Kirk JA, Walsh GC, Hronmada LP, Zmood RB, Sullivan GE. Open core composite flywheel.
Proceedings of the 32nd intersociety energy conversion engineering conference (IECEC-97),
1997;3:1748–1752.
[56]Fausz JL, Richie DJ. Flywheel simultaneous attitude control and energy storage using a VSCMG
configuration. Proceedings of the 2000 IEEE International Conference on Control Applications,
2000:991–995.
[57]www.activepower.com.
[58]Deng ZG, Lin QX, Wang JS, Zheng J, Jiang DH, Ma GT, et al. Prototype of high temperature
superconducting magnetic levitation flywheel energy storage system. Chinese J Low Temp
Phys. 2009;31(4):311–314. (In Chinese).
[59]Deng Z, Lin Q, Ma G, Zheng J, Zhang Y, Wang S, et al. A double-superconducting axial bearing
system for an energy storage flywheel model. J Phys Conf Ser. 2008;97:012283.
[60]Werfel FN, Floegel-Delor U, Riedel T, Rothfeld R, Wippich D, Goebel B, et al. 250 kW flywheel
with HTS magnetic bearing for industrial use. J Phys Conf Ser. 2008;97:012206.

Free download pdf