References Ë 367[61]Werfel FN, Floegel-Delor U, Riedel T, Wippich D, Goebel B, Rothfeld R. HTS flywheel from R&D to
pilot energy storage system. J Phys Conf Ser. 2010;234:032062.
[62]Siems SO, Canders WR, Walter H, Bock J. Superconducting magnetic bearings for a 2 MW/10
kW h class energy storage flywheel system. Supercond Sci Technol. 2004;17:S229–S233.
[63]Coombs TA, Samad I, Ruiz-Alonso D, Tadinada K. Superconducting micro-bearings. IEEE
Transaction on Applied Superconductivity. 2005;15(2):2312–2315.
[64]Lee K, Kim B, Ko J, Jeong S, Lee SS. Advanced design and experiment of a small-size flywheel
energy storage system using a high-temperature superconductor bearing. Supercond Sci
Technol. 2007;20:634–639.
[65]Kim B, Ko J, Jeong S, Lee SS. Experiment and analysis for a small-sized flywheel energy
storage system with a high-temperature superconductor bearing. Supercond Sci Technol.
2006;19:217–222.
[66]Lee E, Kim B, Ko J, Song CY, Kim SJ, Jeong S, Lee SS. An integrated micro HTS system for
energy storage and attitude control for three-axis stabilized nanosatellites. IEEE Trans Appl
Supercond. 2005;15(2):2324–2327.
[67]Lee E. A micro HTS renewable energy/attitude control system for micro/nano satellites. IEEE
Trans Appl Supercond. 2003;13(2):2263–2266.
[68]Lee E. A high-temperature superconductor – magnet energy storage and attitude control
system for space MEMS. 2002 IEEE Aerospace conference proceedings. 2002;5:2365–2371.
[69]Sotelo GG, de Andrade R, Ferreira AC. Magnetic bearing sets for a flywheel system. IEEE Trans
Appl Supercond. 2007;17(2):2150–2153.
[70]Perini E, Giunchi G. Field cooling of a MgB2 cylinder around a permanent magnet stack:
prototype for superconductive magnetic bearing. Supercond Sci Technol. 2009;22:045021.
[71]Koshizuka N, Ishikawa F, Nasu H, Murakami M, Matsunaga K, Saito S, Saito O, et al. Progress
of superconducting bearing technologies for flywheel energy storage systems. Physica C.
2003;386:444–450.
[72]Day AC, Hull JR, Strasik M, Johnson PE, McCrary KE, Edwards J, et al. Temperature and
frequency effects in a high-performance superconducting bearing. IEEE Trans Appl Supercond.
2003;13(2):2179–2184.
[73]Han YH, Park KJ, Park BJ, Jung SY, Han SC, Lee WR, Bae YC. Results and analysis of an accident
in 35-kWh SFES. IEEE Trans Appl Supercond. 2013;23(6):5701806.
[74]Fang JR, Lin LZ, Yan LG, Xiao LY. A new flywheel energy storage system using hybrid
superconducting magnetic bearings. IEEE Trans Appl Supercond. 2001;11(1):1657–1660.
[75]Li YL, Fang J, Guo MZ, Xiao L, Zheng MH, Jiao YL. Analysis on a new-style HTS magnetic
bearing’s characteristics of levitation force. Rare Metal Materials and Engineering.
2008;37(S4):221–225. (In Chinese).
[76]Deng Z, Lin Q, Wang J, Zheng J, Ma G, Liu L, Zhang Y, Wang S. Basic design and characteristics
study of a double-axial superconducting magnetic bearing system. Cryogenics. 2009;49:
259–262.
[77]Deng ZG, Lin QX, Wang JS, Zheng J, Zhang Y, Wang SY. Dynamic test platform for high
temperature superconducting magnetic bearings. Cryogenics and Superconductivity.
2009;37(3):1–4. (In Chinese).
[78]Deng ZG, Lin QX, Wang JS, Zheng J, Jiang DH, Zhang Y, Wang SY. Study on the coeflcient of
friction of high temperature superconducting magnetic bearings. Chinese J Low Temp Phys.
2009;31(5):227–230. (In Chinese).
[79]Lin QX. Research on characteristics of radial high temperature superconducting bearing, PhD
thesis, Southwest Jiaotong University; 2013. (In Chinese).
[80]Grigorashvili Y. Superconductors – properties, technology, and applications. InTech; 2012.
[81]Gyuk IP. EPRI Technical Report, December, 2003.