High Temperature Superconducting Magnetic Levitation

(やまだぃちぅ) #1
References Ë 55

[101]Werfel FN, Floegel-Delor U, Rothfeld R, Riedel T, Goebel B, Wippich D, et al. Superconductor
bearings, flywheels and transportation. Supercond Sci Technol. 2011;25(1):14007–14002(16).
[102]Werfel FN, Floegel-Delor U, Riedel T, Goebel B, Rothfeld R, Schirrmeister P, et al. Large-scale
HTS bulks for magnetic application. Physica C. 2013;484(1):6–11.
[103]Sakai N, Inoue K, Shisa A, Hirata H, Murakami M. Fabrication of large-grain bulk superconduc-
tors in microgravity environment. Acta Astronautica. 2003;53(1):35–43.
[104]Morita M, Miyamoto K, Doi K, Murakami M, Sawano K, Matsuda S. Processing and
superconducting properties of high-Jcbulk YBaCuO prepared by melt process. Physica C.
1990;172(3–4):383–387.
[105]Morita M, Sawamura M, Takebayashi S, Kimura K, Teshima H, Tanaka M, et al. Processing and
properties of QMG materials. Physica C. 1994;235–240(6):209–212.
[106]Teshima H, Morita M. Physics recent progress in HTS bulk technology and performance at
NSC. Procedia. 2012;36:572–575.
[107]Krabbes G, Fuchs G, Verges P, Diko P, Stöer G, Gruss S. 16 T trapped fields in modified
YBaCuO: materials aspects. Physica C. 2002;378–381(15):636–640.
[108]Schäzle P, Krabbes G, GruβS, Fuchs G. YBCO/Ag bulk material by melt crystalization for
cryomagnetic applications. IEEE Trans on Appl Supercond. 1999;9(2):2022–2025.
[109]Tomita M, Murakami M. Improvement of the trapping capacity of bulk superconductor with
resin impregnation. IEEE Trans on Appl Supercond. 2003;13(2):3095–3098.
[110]Tomita M, Murakami M. High-temperature superconductor bulk magnets that can trap
magnetic fields of over 17 tesla at 29 K. Nature. 2003;421(6922):517–20.
[111]Xu HH, Chen YY, Cheng L, Yan SB, Yu DJ, Guo LS, et al. YBCO-Buffered NdBCO Film with higher
thermal stability in seeding REBCO growth and recycling failed bulk YBCO superconductors.
J Supercond Nov Magn. 2013;26(4):919–922.
[112]Peng BN, Cheng L, Zhuang YF, Xu HH, Yao X. Large size and highTc,JcSmBCO
bulk superconductor with addition of Sm242 particles grown in air. Physica C.
2014;496(496):11–13.
[113]Yang WM, Zhi X, Chen SL, Wang M, Li JW, Ma J, et al. Fabrication of single domain GdBCO bulk
superconductors by a new modified TSIG technique. Physica C. 2014;496(1):1–4.
[114]Yang WM, Guo XD, Wan F, Li GZ. Real-time observation and analysis of single-domain YBCO
bulk superconductor by TSIG process. Crystal growth & design. 2011;11(7):3056–3059.
[115]Yang CM, Wang SY, Huang YC, Chen PW, Chen IG, Wu MK. The optimal growth of single grain
bulk Y–Ba–Cu–O superconductors with Nd–Ba–Cu–O thin film seed. IEEE Trans on Appl
Supercond.2014;23(3):6800204–6800204.
[116]Wu XD, Xu KX, Fang H, Jiao YL, Xiao L, Zheng MH. A new seeding approach to the melt texture
growth of a large YBCO single domain with diameter above 53 mm. Supercond Sci Technol.
2009;22(12):125003.
[117]Shi YH, Durrell JH, Dennis AR, Babu NH, Mancini CE, Cardwell DA. Properties of grain
boundaries in bulk, melt processed Y–Ba–Cu–O fabricated using bridge-shaped seeds.
Supercond Sci Technol. 2012;25(4):45006–45012(7).
[118]Plechacek V, Jirsa M, Rames M, Muralidhar M. Batch production of YBCO disks for levitation
applications. Physics procedia. 2012;36:538–543.
[119]Zhou DF, Hara S, Li B, Xu KZ, Noudem J, Izumi M. Significant improvement of trapped flux
in bulk Gd–Ba–Cu–O grains fabricated by a modified top-seeded melt growth process.
Supercond Sci Technol. 2013;26(1):015003.
[120]Zhou DF. Doctoral Dissertation, Tokyo University of Marine Science and Technology,
2013;26(1):015003.

Free download pdf