explain food-web structure.Nature, 427 ,
835–839.
Chase, J. M. (1999). Food web effects of prey size
refugia: variable interactions and alterna-
tive stable equilibria.American Naturalist,
154 , 559–570.
Claessen, D., de Roos, A. M. & Persson, L. (2000).
Dwarfs and giants: cannibalism and com-
petition in size-structured populations.
American Naturalist, 155 , 219–237.
Cohen, J.E., Briand, F. & Newman, C.M. (1986). A
stochastic theory of community food webs.
III. Predicted and observed lengths of food
chains.Proceedings of the Royal Society of London
B, 228 , 317–353.
Cohen, J.E., Pimm, S.L., Yodzis, P. & Saldana, J.
(1993). Body sizes of animal predators and
animal prey in food webs.Journal of Animal
Ecology, 62 , 67–78.
Cohen, J.E., Jonsson, T. & Carpenter, S. R. (2003).
Ecological community description using the
food web, species abundance, and body size.
Proceedings of the National Academy of Sciences
USA, 100 , 1781–1786.
Courchamp, F., Langlais, M. & Sugihara, G.
(1999). Cats protecting birds: modelling the
mesopredator release effect.Journal of
Animal Ecology, 68 , 292–293.
Cousins, S.H. (1980). A trophic continuum
derived from plant structure, animal size
and a detritus cascade.Journal of Theoretical
Biology, 82 , 607–618.
Cousins, S.H. (1985). The trophic continuum in
marine ecosystems: structure and equations
for a predictive model.Canadian Bulletin of
Fisheries and Aquatic Sciences, 213 , 76–93.
De Roos, A. M. & Persson, L. (2002). Size-
dependent life-history traits promote cata-
strophic collapses of top predators.
Proceedings of the National Academy of Sciences
USA, 99 , 12907–12912.
de Ruiter, P. C., Neutel, A. M. & Moore, J. C.
(1995). Energetics, patterns of interaction
strengths, and stability in real ecosystems.
Science, 269 , 1257–1260.
Dickie, L. M., Kerr, S. R. & Boudreau, P. R. (1987).
Size-dependent processes underlying regu-
larities in ecosystem structure.Ecological
Monographs, 57 , 233–250.
Eggleston, D. B. (1990). Functional response of
blue crabsCallinectes sapidusRathburn feed-
ing on juvenile oystersCrassostrea virginica
(Gmelin): effects of predator sex and size,
and prey size.Journal of Experimental Marine
Biology and Ecology, 143 , 73–90.
Elton, C.S. (1927).Animal Ecology. London:
Sidgwick & Jackson.
Emmerson, M. C. & Raffaelli, D. G. (2004). Body
size, patterns of interaction strength and
the stability of a real food web.Journal of
Animal Ecology, 73 , 399–409.
Fry, F. E. & Cox, E.T. (1970). A relation of size to
swimming speed in rainbow trout.Journal of
the Fisheries Research Board of Canada, 27 ,
976–978.
Gaston, K. J. & Blackburn, T.M. (2000).Pattern and
Process in Macroecology. Oxford: Blackwell
Science.
Giller, P.S., Hillebrand, H., Berninger, U.-G.et al.
(2004). Biodiversity effects on ecosystem
functioning: emerging issues and their
experimental test in aquatic environments.
Oikos, 104 , 423.
Hardy, A. (1924). The herring in relation to its
animate environment, part 1.Fisheries
Investigations, Series 27 (3).
Hewett, S. W. (1980). The effect of prey size on
the functional and numerical responses of a
protozoan predator to its prey.Ecology, 61 ,
1075–1081.
Hutchinson, G. E. (1959). Homage to Santa
Rosalia or why are there so many kinds of
animals?American Naturalist, 93 , 145–159.
Huxham, M., Beaney, S. & Raffaelli, D. (1996). Do
parasites reduce the chances of triangula-
tion in a real food web?Oikos, 76 , 284–300.
Kerr, S. R. (1974). Theory of size distribution in
ecological communities.Journal of the
Fisheries Research Board of Canada, 31 ,
1859–1862.
BODY SIZE AND PREDATORY INTERACTIONS IN FRESHWATERS 115