Plant Tropisms

(Frankie) #1

Kimura, M., and T. Kagawa. 2006. Phototropin and light-signaling in phototropism. Curr. Opin.
Plant Sci. 9: 503–508.
King, D.A. 1997. The functional significance of leaf angle in Eucalyptus.Austral. J. Bot. 45:
619–639.
Kiss, J.Z., P. Kumar, R.N. Bowman, M.K. Steele, M.T. Eodice, M.J. Correll, R.E. Edelmann. 2007.
Biocompatibility studies in preparation for a spaceflight experiment on plant tropisms
(TROPI). Adv. Space Res., in press.
Kiss, J.Z., K.M. Miller, L.A. Ogden, and K.K. Roth 2002. Phototropism and gravitropism in lat-
eral roots of Arabidopsis.Plant Cell Physiol.43: 35–43.
Kiss, J.Z, J.L. Mullen, M.J. Correll, and R.P. Hangarter. 2003. Phytochromes A and B mediate red-
light-induced positive phototropism in roots. Plant Physiol.131: 1411–1417.
Koller, D., and I. Levitan. 1989. Diurnal phototropism in leaves of Lavatera creticaL. under con-
ditions of simulated solar tracking. J. Exp. Bot.40: 1059–1064.
Koller, D., S. Ritter, W.R. Briggs, and E. Schäfer. 1990. Action dichroism in perception of vecto-
rial photo-excitation in the solar-tracking leaf of Lavatera creticaL.Planta181: 184–190.
Kong, S.-G., T. Suzuki, K. Tamura, N. Mochizuki, I. Hara-Nishimura, and A. Nagatani. 2006. Blue
light-induced association of phototropin 2 with the Golgi apparatus. Plant J.45: 994–1005.
Kumar P., and J.Z. Kiss. 2007. The SHL1andSHL5genes influence both red- and blue-light-based
phototropism in Arabidopsis thaliana.Environ. Exp. Bot.60: 284–289
Lang, A.P.G., and J.E. Begg. 1979. Movements of Helianthus annuusleaves and heads. J. Applied
Ecol.16: 299–305.
Lariguet, P., and C. Fankhauser. 2004. Hypocotyl growth orientation in blue light is determined by
phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J.
40: 826–834.
Lasceve, G., J. Leymarie, M.A. Olney, E. Liscum, J.M. Christie, A. Vavasseur, and W.R. Briggs.
1999.Arabidopsiscontains at least four independent blue-light-activated signal transduction
pathways. Plant Physiol.120: 605–614.
Liscum, E., and W.R. Briggs. 1996. Mutations of Arabidopsisin potential transduction and re-
sponse components of the phototropic signaling pathway. Plant Physiol.112: 291–296.
Liscum, E., and R.P. Hangarter. 1993. Genetic evidence that the Pr form of phytochrome B plays
a role in Arabidopsis thalianagravitropism. Plant Physiol.103: 15–19.
Liscum, E., and E. Stowe-Evans. 2000. Phototropism: a “simple” physiological response mediated
by multiple interacting photosensory-response pathways. Photochem. Photobiol.72: 273–282.
Liu, Y.T., and M. Iino. 1996. Phytochrome is required for the occurrence of time-dependent pho-
totropism in maize coleoptiles. Plant Cell Environ.19: 1379–1388.
Maisch, J., and P. Nick. 2007. Actin is involved in auxin-dependent patterning. Plant Physiol.143:
1695–1704.
Mano, E., G. Horiguchi, and H. Tsukaya. 2006. Gravitropism in leaves of Arabidopsis thaliana
(L.) Heynh. Plant Cell Physiol.47: 217–223.
Mao, J., Y.C. Zhang, Y. Sang, Q.H. Li, and H.Q. Yang. 2005. A role for Arabidopsiscryptochromes
and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. (USA) 102: 12270–12275.
Mas, P., P.F. Devlin, S. Panda, and S.A. Kay. 2000. Functional interaction of phytochrome B and
cryptochrome 2. Nature408: 207–211.
McArthur, J.A., and W.R. Briggs. 1979. Effect of red light on geotropism in pea epicotyls. Plant
Physiol.63: 218–220.
Møller, S.G., P.J. Ingles, and G.C. Whitelam. 2002. The cell biology of phytochrome signalling.
New Phytol.154: 553–590.
Mullen, J.L., and R.P. Hangarter. 2003. Genetic analysis of the gravitropic set-point angle in lat-
eral roots of Arabidopsis.Adv. Space Res.31: 2229–2236.


88 PLANT TROPISMS
Free download pdf