Plant Tropisms

(Frankie) #1

Brown, A.H., Chapman, D.K., Johnsson, A., and D. Heathcote. 1995. Gravitropic responses of the
Avenacoleoptile in space and on clinostats. I. Gravitropic response threshold. Physiol. Plant.
95 : 27–33.
Brown, A.H., Johnsson, A., Chapman, D.K., and D. Heathcote. 1996. Gravitropic responses of the
Avena coleoptile in space and on clinostats. IV. The clinostat as a substitute for space experi-
ments.Physiol. Plant. 98: 210–214.
Cogoli, A. 1996. Biology under microgravity conditions in Spacelab International Microgravity
Laboratory 2 (IML-2). J. Biotechnol. 47: 67–70.
Correll, M.J., and J.Z. Kiss. 2002. Interactions between gravitropism and phototropism in plants.
J. Plant Growth Regul. 21: 89–101.
Correll, M.J., Edelmann, R.E., Hangarter, R.P., Mullen, J.P., and J.Z. Kiss. 2005. Ground-based
studies of tropisms in hardware developed for the European Modular Cultivation System
(EMCS).Adv. Space Res. 36: 1203–1210.
Driss-Ecole, D., Jeune, B., Prouteau, M., Julianus, P., and G. Perbal. 2000. Lentil root statoliths
reach a stable state in microgravity. Planta 211: 396–405.
Driss-Ecole, D., Lefranc, A., and G. Perbal. 2003. A polarized cell: the root statocyte. Physiol.
Plant. 118: 305–312.
European Space Agency. 2006. Human Spaceflight: Sounding Rockets. Web page <http://space-
flight.esa.int/users/index.cfm?act =default.page&level=11&page=facsrockets>, accessed April
18, 2006.
Fitzelle, K.J., and J.Z. Kiss. 2001. Restoration of gravitropic sensitivity in starch-deficient mutants
ofArabidopsisby hypergravity.J. Exp. Bot. 52: 265–275.
Friedman, H., Vos, J.W., Hepler, P.K., Meir, S., Halevy, A.H., and S. Philosoph-Hadas. 2003. The
role of actin filaments in the gravitropic response of snapdragon flowering shoots. Planta 216:
1034–1042.
Fukaki, H., Fujisawa, H., and M. Tasaka. 1996. SGR1, SGR2, SGR3: Novel genetic loci involved
in shoot gravitropism in Arabidopsis thaliana. Plant Physiol. 110: 945–955.
Fukaki, H., Wysocka-Diller, J., Kato, T., Fujisawa, H., Benfey, P.N., and M. Tasaka. 1998. Genetic
evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant
J. 1 4: 425–430.
Häder, D.-P., and R. Hemmersbach. 1997. Graviperception and graviorientation in flagellates.
Planta 203: S7–S10
Hangarter, R.P. 1997. Gravity, light and plant form. Plant Cell Environ. 20: 796–800.
Heathcote, D.G., Brown, A.H., and D.K. Chapman. 1995a. The phototropic response of Triticum
aestivumcoleoptiles under conditions of low gravity. Plant Cell Environ. 18: 53–60.
Heathcote, D.G., Chapman, D.K., and A.H. Brown. 1995b. Nastic curvatures of wheat coleoptiles
that develop in true microgravity. Plant Cell Environ. 18: 818–822.
Hejnowicz, Z., Sondag, C., Alt, W., and A. Sievers. 1998. Temporal course of graviperception in
intermittently stimulated cress roots. Plant Cell Environ. 21: 1293–1300.
Hilaire, E., Paulsen, A.Q., Brown, C.S., and J.A. Guikema. 1995. Microgravity and clinorotation
cause redistribution of free calcium in sweet clover columella cells. Plant Cell Physiol. 36:
831–837.
Hoson, T. Kamisaka, S., Masuda, Y., Yamashita, M., and B. Buchen. 1997. Evaluation of the three-
dimensional clinostat as a simulator of weightlessness. Planta 203: S187–S197.
Iversen, T.-H., Ødegaard, E., Beisvåg, T., Johnsson, A., and O. Rasmussen. 1996. The behaviour
of normal and agravitropic transgenic roots of rapeseed (Brassica napus L.) under micrograv-
ity conditions. J. Biotechnol. 47: 137–154.
Jaffe, M.J., Takahashi, H., and R.L. Biro. 1985. A pea mutant for the study of hydrotropism in
roots.Science 230: 445–447.


178 PLANT TROPISMS
Free download pdf