PK
PK
PK
PK
PK
PKPKPK
PK
PK
PK
PK
PK
PKPK
PK
PK
PK
PKPK
PK
PK
PK
PK
PK
PK
PKPH PK PKCC1 C1C1C1 C2C1C 1 PK PKC
C1 C1C1C1 C2C1C^1 PK PKC
C1 C1C1C1 C2C1C 1 PK PKC
C1 C1C1C1 C2C1C 1 PK PKC
C1 C1C1C1 PK PKCPH PK PKCPH PK PKCPH PK PKCPK PKC
PK PKC
PK PKC
PK PKCPH PK PKCPK PKC PKPKDUF3543
DUF3543MIT
MIT
MITMIT
MIT
MITDUF3543
DUF3543
DUF3543PK
PKCPKCDUF3543PH PKCPKC
PK
PK PK
PK
DUF3543Human RPS6K A PK PKC
Human RPS6K B
Fungi RPS6K B - like
Plants RPS6K B - likeNemve RPS6K A
Nemve RPS6K BHuman AKT 1
Human AKT 2
Human AKT 3
Drome AKT 1/2/3
Human PRKC A
Human PRKC B
Human PRKC G
Drome PRKC
Fungi PRKC
Dicdy AKT-likeHuman CAMKK 1
Human CAMKK 2
Drome CAMKK
Fungi CAMKK
Plants CAMKK
Human STK 11
Nemve STK 11
Fungi STK 11
PlantsPlantsHuman PRKAA 1
Human PRKAA 2
Drome PRKAA
Fungi PRKAA
Plants PRKAA
Human MAPK 1
Human MAPK 3
Drome MAPK
Fungi MAPK
Plants MAPKKA1Human ULK 1
Human ULK 2
Drome ULK 1/2
Nemve ULK 1/2
Human ULK 3
Drome ULK 3
Nemve ULK 3
Fungi ULK 1/2 - like
Plants ULK 1/2 - like
LECA1 2 3 4 5 6 71 2
3 - 6 7
gene lossgene lossFig. 12A hypothetical evolutionary scenario of eukaryotic kinase evolution. The figure integrates the results
from phylogenetic tree reconstruction and Pfam domain architecture analysis. The phylogenetic relationships
of contemporary kinases imply the existence of seven proto-kinases in the last eukaryotic common ancestor
(LECA). A parsimony criterion was used to infer the Pfam domain architecture of these ancestral proteins
(numbers 1–7 below the tree).See[12] for details
Tracing AMPK Evolution 137