Science - USA (2022-04-29)

(Antfer) #1

was performed on nontraining patches and on
melanoma patient samples from The Cancer
Genome Atlas (TCGA), processed with the same
pipeline. Additional and more detailed mate-
rials and methods are available in the supple-
mentary materials ( 30 ).


REFERENCESANDNOTES



  1. L. A. Garraway, E. S. Lander, Lessons from the cancer genome.
    Cell 153 , 17–37 (2013). doi:10.1016/j.cell.2013.03.002;
    pmid: 23540688

  2. B. Vogelsteinet al., Cancer genome landscapes.Science 339 ,
    1546 – 1558 (2013). doi:10.1126/science.1235122; pmid: 23539594

  3. S. Turajlicet al., Tracking Cancer Evolution Reveals
    Constrained Routes to Metastases: TRACERx Renal.Cell 173 ,
    581 – 594.e12 (2018). doi:10.1016/j.cell.2018.03.057;
    pmid: 29656895

  4. J. Z. Sanbornet al., Phylogenetic analyses of melanoma reveal
    complex patterns of metastatic dissemination.Proc. Natl.
    Acad. Sci. U.S.A. 112 , 10995–11000 (2015). doi:10.1073/
    pnas.1508074112; pmid: 26286987

  5. J. M. Zaretskyet al., Mutations Associated with Acquired
    Resistance to PD-1 Blockade in Melanoma.N. Engl. J. Med. 375 ,
    819 – 829 (2016). doi:10.1056/NEJMoa1604958; pmid: 27433843

  6. G. Cirielloet al., Emerging landscape of oncogenic signatures
    across human cancers.Nat. Genet. 45 , 1127–1133 (2013).
    doi:10.1038/ng.2762; pmid: 24071851

  7. M. Imielinskiet al., Mapping the hallmarks of lung adenocarcinoma
    with massively parallel sequencing.Cell 150 , 1107–1120 (2012).
    doi:10.1016/j.cell.2012.08.029; pmid: 22980975

  8. E. Hodiset al., A landscape of driver mutations in melanoma.
    Cell 150 , 251–263 (2012). doi:10.1016/j.cell.2012.06.024;
    pmid: 22817889

  9. M. Ghandiet al., Next-generation characterization of the
    Cancer Cell Line Encyclopedia.Nature 569 , 503–508 (2019).
    doi:10.1038/s41586-019-1186-3; pmid: 31068700

  10. M. J. Garnettet al., Systematic identification of genomic markers of
    drug sensitivity in cancer cells.Nature 483 , 570–575 (2012).
    doi:10.1038/nature11005; pmid: 22460902

  11. J. Barretinaet al., The Cancer Cell Line Encyclopedia enables
    predictive modelling of anticancer drug sensitivity.Nature 483 ,
    603 – 607 (2012). doi:10.1038/nature11003; pmid: 22460905

  12. L. Conget al., Multiplex genome engineering using CRISPR/
    Cas systems.Science 339 , 819–823 (2013). doi:10.1126/
    science.1231143; pmid: 23287718

  13. P. Maliet al., RNA-guided human genome engineering via Cas9.
    Science 339 , 823–826 (2013). doi:10.1126/science.1232033;
    pmid: 23287722

  14. J. Drostet al., Sequential cancer mutations in cultured human
    intestinal stem cells.Nature 521 , 43–47 (2015). doi:10.1038/
    nature14415; pmid: 25924068

  15. M. Matanoet al., Modeling colorectal cancer using CRISPR-Cas9-
    mediated engineering of human intestinal organoids.Nat. Med. 21 ,
    256 – 262 (2015). doi:10.1038/nm.3802; pmid: 25706875

  16. R. Alkallaset al., Multi-omic analysis reveals significantly
    mutated genes and DDX3X as a sex-specific tumor suppressor
    in cutaneous melanoma.Nat. Can. 1 , 635–652 (2020).
    doi:10.1038/s43018-020-0077-8; pmid: 35121978

  17. B. C. Bastian, The molecular pathology of melanoma:
    An integrated taxonomy of melanocytic neoplasia.Annu. Rev.
    Pathol. 9 , 239–271 (2014). doi:10.1146/annurev-pathol-
    012513-104658; pmid: 24460190

  18. A. H. Shainet al., The Genetic Evolution of Melanoma from
    Precursor Lesions.N. Engl. J. Med. 373 , 1926–1936 (2015).
    doi:10.1056/NEJMoa1502583; pmid: 26559571

  19. D. C. Bennett, Genetics of melanoma progression: The rise and
    fall of cell senescence.Pigment Cell Melanoma Res. 29 ,
    122 – 140 (2016). doi:10.1111/pcmr.12422; pmid: 26386262

  20. E. Hodis, L. A. Garraway, inMelanoma, D. E. Fisher, B. C. Bastian,
    Eds. (Springer, 2017), vol. 161, pp. 1–23.

  21. F. W. Huanget al., Highly recurrent TERT promoter mutations
    in human melanoma.Science 339 , 957–959 (2013).
    doi:10.1126/science.1229259; pmid: 23348506

  22. S. Hornet al., TERT promoter mutations in familial and
    sporadic melanoma.Science 339 , 959–961 (2013).
    doi:10.1126/science.1230062; pmid: 23348503

  23. M. Krauthammeret al., Exome sequencing identifies
    recurrent somatic RAC1 mutations in melanoma.
    Nat. Genet. 44 , 1006–1014 (2012). doi:10.1038/ng.2359;
    pmid: 22842228
    24. R. Akbaniet al., Genomic Classification of Cutaneous Melanoma.
    Cell 161 , 1681–1696 (2015). doi:10.1016/j.cell.2015.05.044;
    pmid: 26091043
    25. L. B. Alexandrovet al., Signatures of mutational processes in
    human cancer.Nature 500 , 415–421 (2013). doi:10.1038/
    nature12477; pmid: 23945592
    26. A. H. Shain, B. C. Bastian, From melanocytes to melanomas.
    Nat. Rev. Cancer 16 , 345–358 (2016). doi:10.1038/
    nrc.2016.37; pmid: 27125352
    27. A. H. Shainet al., Genomic and Transcriptomic
    Analysis Reveals Incremental Disruption of Key Signaling
    Pathways during Melanoma Evolution.Cancer Cell
    34 , 45–55.e4 (2018). doi:10.1016/j.ccell.2018.06.005;
    pmid: 29990500
    28. H. Zenget al., Bi-allelic Loss of CDKN2A Initiates Melanoma
    Invasion via BRN2 Activation.Cancer Cell 34 , 56–68.e9 (2018).
    doi:10.1016/j.ccell.2018.05.014; pmid: 29990501
    29. M. R. Stratton, P. J. Campbell, P. A. Futreal, The cancer
    genome.Nature 458 , 719–724 (2009). doi:10.1038/
    nature07943; pmid: 19360079
    30. Materials, methods, and supplementary text are available as
    supplementary materials.
    31. D. P. Deveret al., CRISPR/Cas9b-globin gene targeting in
    human haematopoietic stem cells.Nature 539 , 384– 389
    (2016). doi:10.1038/nature20134; pmid: 27820943
    32. A. Hendelet al., Chemically modified guide RNAs enhance
    CRISPR-Cas genome editing in human primary cells.
    Nat. Biotechnol. 33 , 985–989 (2015). doi:10.1038/nbt.3290;
    pmid: 26121415
    33. S. C. Knightet al., Dynamics of CRISPR-Cas9 genome
    interrogation in living cells.Science 350 , 823–826 (2015).
    doi:10.1126/science.aac6572; pmid: 26564855
    34. I. Yehet al., Combined activation of MAP kinase pathway
    andb-catenin signaling cause deep penetrating nevi.
    Nat. Commun. 8 , 644 (2017). doi:10.1038/s41467-017-
    00758-3; pmid: 28935960
    35. M. Stoeckiuset al., Cell Hashing with barcoded antibodies
    enables multiplexing and doublet detection for single cell
    genomics.Genome Biol. 19 , 224 (2018). doi:10.1186/s13059-
    018-1603-1; pmid: 30567574
    36. D. Kotliaret al., Identifying gene expression programs of
    cell-type identity and cellular activity with single-cell
    RNA-Seq.eLife 8 , e43803 (2019). doi:10.7554/eLife.43803;
    pmid: 31282856
    37. M. De Ceccoet al., L1 drives IFN in senescent cells and
    promotes age-associated inflammation.Nature 566 , 73– 78
    (2019). doi:10.1038/s41586-018-0784-9; pmid: 30728521
    38. S. Wanget al., Interferon-ginduces senescence in normal
    human melanocytes.PLOS ONE 9 , e93232 (2014).
    doi:10.1371/journal.pone.0093232; pmid: 24681574
    39. A. Rufini, P. Tucci, I. Celardo, G. Melino, Senescence and aging:
    The critical roles of p53.Oncogene 32 , 5129–5143 (2013).
    doi:10.1038/onc.2012.640; pmid: 23416979
    40. Z. Liuet al., Telomerase reverse transcriptase promotes
    epithelial-mesenchymal transition and stem cell-like traits in
    cancer cells.Oncogene 32 , 4203–4213 (2013). doi:10.1038/
    onc.2012.441; pmid: 23045275
    41. Y. Wuet al., Telomerase reverse transcriptase mediates EMT
    through NF-kB signaling in tongue squamous cell carcinoma.
    Oncotarget 8 , 85492–85503 (2017). doi:10.18632/
    oncotarget.20888; pmid: 29156735
    42. A. Hodorogeaet al., Epithelial-Mesenchymal Transition
    in Skin Cancers: A Review.Anal. Cell. Pathol. (Amst.)
    2019 , 3851576 (2019). doi:10.1155/2019/3851576;
    pmid: 31934531
    43. W. E. Damskyet al.,b-catenin signaling controls metastasis in
    Braf-activated Pten-deficient melanomas.Cancer Cell 20 , 741– 754
    (2011). doi:10.1016/j.ccr.2011.10.030; pmid: 22172720
    44. G. S. Kinkeret al., Pan-cancer single-cell RNA-seq identifies
    recurring programs of cellular heterogeneity.Nat. Genet. 52 ,
    1208 – 1218 (2020). doi:10.1038/s41588-020-00726-6;
    pmid: 33128048
    45. M. R. Webster, A. T. Weeraratna, A Wnt-er migration: The confusing
    role ofb-catenin in melanoma metastasis.Sci. Signal. 6 , (2013).
    doi:10.1126/scisignal.2004114; pmid: 2004114
    46. W. E. Damsky, N. Theodosakis, M. Bosenberg, Melanoma
    metastasis: New concepts and evolving paradigms.Oncogene 33 ,
    2413 – 2422 (2014). doi:10.1038/onc.2013.194; pmid: 23728340
    47. A. Kaur, M. R. Webster, A. T. Weeraratna, In the Wnt-er of life:
    Wnt signalling in melanoma and ageing.Br. J. Cancer 115 ,
    1273 – 1279 (2016). doi:10.1038/bjc.2016.332; pmid: 27764844
    48. L. A. Garrawayet al., Integrative genomic analyses identify
    MITF as a lineage survival oncogene amplified in malignant


melanoma.Nature 436 , 117–122 (2005). doi:10.1038/
nature03664; pmid: 16001072


  1. I. Tiroshet al., Dissecting the multicellular ecosystem of metastatic
    melanoma by single-cell RNA-seq.Science 352 , 189–196 (2016).
    doi:10.1126/science.aad0501; pmid: 27124452

  2. M. Lauss, J. Nsengimana, J. Staaf, J. Newton-Bishop, G. Jönsson,
    Consensus of Melanoma Gene Expression Subtypes Converges
    on Biological Entities.J. Invest. Dermatol. 136 , 2502–2505 (2016).
    doi:10.1016/j.jid.2016.05.119; pmid: 27345472

  3. L. Jerby-Arnonet al., A Cancer Cell Program Promotes T Cell
    Exclusion and Resistance to Checkpoint Blockade.Cell 175 ,
    984 – 997.e24 (2018). doi:10.1016/j.cell.2018.09.006;
    pmid: 30388455

  4. S. Davidsonet al., Single-Cell RNA Sequencing Reveals a
    Dynamic Stromal Niche That Supports Tumor Growth.
    Cell Rep. 31 , 107628 (2020). doi:10.1016/
    j.celrep.2020.107628; pmid: 32433953

  5. T. O. Jensenet al., Intratumoral neutrophils and plasmacytoid
    dendritic cells indicate poor prognosis and are associated
    with pSTAT3 expression in AJCC stage I/II melanoma.
    Cancer 118 , 2476–2485 (2012). doi:10.1002/cncr.26511;
    pmid: 21953023

  6. B. Johnstonet al., Chronic inflammation upregulates chemokine
    receptors and induces neutrophil migration to monocyte
    chemoattractant protein-1.J. Clin. Invest. 103 , 1269–1276 (1999).
    doi:10.1172/JCI5208; pmid: 10225970

  7. R. Zilioniset al., Single-Cell Transcriptomics of Human and
    Mouse Lung Cancers Reveals Conserved Myeloid Populations
    across Individuals and Species.Immunity 50 , 1317–1334.e10
    (2019). doi:10.1016/j.immuni.2019.03.009; pmid: 30979687

  8. A. M. De Silva, A. Gallardo, D. A. Fraser, Macrophage
    production and activity of innate immune proteins C1q, C1r,
    and C1s are modulated in response to molecular patterns.
    J. Immunol. 204 , 226 (2020).

  9. D. Fraser, E. Melzer, A. Camacho, M. Gomez, Macrophage
    production of innate immune protein C1q is associated with M2
    polarization (INM1P.434).J. Immunol. 194 , 56 (2015).

  10. F.-C. Chou, H.-Y. Chen, C.-C. Kuo, H.-K. Sytwu, Role of Galectins
    in Tumors and in Clinical Immunotherapy, Role of Galectins in
    Tumors and in Clinical Immunotherapy,Int. J. Mol. Sci. 19 , 430
    (2018). doi:10.3390/ijms19020430; pmid: 29389859

  11. K. Nazeri, A. Aminpour, M. Ebrahimi, "Two-stage convolutional
    neural network for breast cancer histology image
    classification" inLecture Notes in Computer Science,
    B. ter Haar Romeny, A. Campilho, F. Karray, Eds. (Springer,
    2018), vol. 10882, pp. 717–726.

  12. J. N. Katheret al., Pan-cancer image-based detection of
    clinically actionable genetic alterations.Nat. Can. 1 , 789– 799
    (2020). doi:10.1038/s43018-020-0087-6; pmid: 33763651

  13. Y. Fuet al., Pan-cancer computational histopathology reveals
    mutations, tumor composition and prognosis.Nat. Can. 1 ,
    800 – 810 (2020). doi:10.1038/s43018-020-0085-8;
    pmid: 35122049

  14. O. Shalemet al., Genome-scale CRISPR-Cas9 knockout
    screening in human cells.Science 343 , 84–87 (2014).
    doi:10.1126/science.1247005; pmid: 24336571

  15. T. Wang, J. J. Wei, D. M. Sabatini, E. S. Lander, Genetic screens in
    human cells using the CRISPR-Cas9 system.Science 343 , 80– 84
    (2014). doi:10.1126/science.1246981; pmid: 24336569

  16. H. Koike-Yusa, Y. Li, E.-P. Tan, Mdel. C. Velasco-Herrera,
    K. Yusa, Genome-wide recessive genetic screening in mammalian
    cells with a lentiviral CRISPR-guide RNA library.Nat. Biotechnol. 32 ,
    267 – 273 (2014). doi:10.1038/nbt.2800; pmid: 24535568

  17. L. A. Gilbertet al., Genome-Scale CRISPR-Mediated Control of
    Gene Repression and Activation.Cell 159 , 647–661 (2014).
    doi:10.1016/j.cell.2014.09.029; pmid: 25307932

  18. A. Dixitet al., Perturb-Seq: Dissecting Molecular Circuits with
    Scalable Single-Cell RNA Profiling of Pooled Genetic Screens.
    Cell 167 , 1853–1866.e17 (2016). doi:10.1016/j.cell.2016.11.038;
    pmid: 27984732

  19. D. A. Jaitinet al., Dissecting Immune Circuits by Linking
    CRISPR-Pooled Screens with Single-Cell RNA-Seq.Cell 167 ,
    1883 – 1896.e15 (2016). doi:10.1016/j.cell.2016.11.039;
    pmid: 27984734

  20. C. Lee, J.-S. Kim, T. Waldman, Activated PI3K signaling as an
    endogenous inducer of p53 in human cancer.Cell Cycle 6 ,
    394 – 396 (2007). doi:10.4161/cc.6.4.3810; pmid: 17329971

  21. AACR Project GENIE Consortium, AACR Project GENIE:
    Powering Precision Medicine through an International
    Consortium.Cancer Discov. 7 , 818–831 (2017). doi:10.1158/
    2159-8290.CD-17-0151; pmid: 28572459

  22. D. B. Johnsonet al., Acquired BRAF inhibitor resistance:
    A multicenter meta-analysis of the spectrum and frequencies,


Hodiset al.,Science 376 , eabi8175 (2022) 29 April 2022 13 of 14


RESEARCH | RESEARCH ARTICLE

Free download pdf