Science - USA (2022-05-06)

(EriveltonMoraes) #1

  1. B. W. Griscomet al., Natural climate solutions.Proc. Natl.
    Acad. Sci. U.S.A. 114 , 11645–11650 (2017). doi:10.1073/
    pnas.1710465114; pmid: 29078344

  2. P. Taillardat, B. S. Thompson, M. Garneau, K. Trottier,
    D. A. Friess, Climate change mitigation potential of wetlands
    and the cost-effectiveness of their restoration.Interface Focus
    10 , 20190129 (2020). doi:10.1098/rsfs.2019.0129;
    pmid: 32832065

  3. C. Schwarzet al., Self-organization of a biogeomorphic
    landscape controlled by plant life-history traits.Nat. Geosci. 11 ,
    672 – 677 (2018). doi:10.1038/s41561-018-0180-y

  4. C. Wang, S. Temmerman, Does biogeomorphic feedback lead
    to abrupt shifts between alternative landscape states?: An
    empirical study on intertidal flats and marshes.J. Geophys.
    Res. Earth Surf. 118 , 229–240 (2013). doi:10.1029/
    2012JF002474

  5. H. Rydin, J. K. Jeglum,The Biology of Peatlands(Oxford Univ.
    Press, 2013).

  6. P. S. Maxwellet al., The fundamental role of ecological
    feedback mechanisms for the adaptive management of
    seagrass ecosystems—A review.Biol. Rev. Camb. Philos. Soc.
    92 , 1521–1538 (2017). doi:10.1111/brv.12294; pmid: 27581168

  7. E. B. Barbieret al., The value of estuarine and coastal
    ecosystem services.Ecol. Monogr. 81 , 169–193 (2011).
    doi:10.1890/10-1510.1

  8. J. H. C. Dau, Ansicht einiger der größeren und kleineren Moore
    Holsteins und Schleswigs, nebst daraus abgeleitete
    Betrachtungen (Overview of some of the larger and smaller
    peatlands of Holstein and Schleswig with some considerations
    derived from them).Schleswig-Holstein-Lauenburgsche Prov.
    10 , 73–82 (1821).

  9. Materials and methods are available as supplementary
    materials.

  10. S. Emerson, J. I. Hedges, Processes controlling the organic
    carbon content of open ocean sediments.Paleoceanography 3 ,
    621 – 634 (1988). doi:10.1029/PA003i005p00621

  11. K. MacDickenet al.,Global Forest Resources Assessment 2015:
    How Are the World’s Forests Changing?(Food and Agriculture
    Organization, ed. 2, 2016).

  12. X. Ouyang, S. Y. Lee, Updated estimates of carbon
    accumulation rates in coastal marsh sediments.
    Biogeosciences 11 , 5057–5071 (2014). doi:10.5194/bg-11-
    5057-2014

  13. J. J. Middelburg, J. Nieuwenhuize, R. K. Lubberts,
    O. van de Plassche, Organic carbon isotope systematics of
    coastal marshes.Estuar. Coast. Shelf Sci. 45 , 681–687 (1997).
    doi:10.1006/ecss.1997.0247

  14. H. Kennedyet al., Seagrass sediments as a global carbon sink:
    Isotopic constraints.Global Biogeochem. Cycles 24 , n/a
    (2010). doi:10.1029/2010GB003848

  15. P. Muelleret al., Assessing the long-term carbon-sequestration
    potential of the semi-natural salt marshes in the European
    Wadden Sea.Ecosphere 10 , e02556 (2019). doi:10.1002/
    ecs2.2556

  16. S. D. Sasmitoet al., Organic carbon burial and sources in soils
    of coastal mudflat and mangrove ecosystems.Catena 187 ,
    104414 (2020). doi:10.1016/j.catena.2019.104414

  17. H. Joosten, D. Clarke,Wise Use of Mires and Peatlands—
    Background and Principles Including a Framework for Decision-
    making(International Mire Conservation Group and
    International Peat Society, 2002).

  18. L. P. M. Lamerset al., Ecological restoration of rich fens in
    Europe and North America: From trial and error to an
    evidence-based approach.Biol. Rev. Camb. Philos. Soc. 90 ,
    182 – 203 (2015). doi:10.1111/brv.12102; pmid: 24698312

  19. J. Schoelyncket al., The trapping of organic matter within
    plant patches in the channels of the Okavango Delta: A matter
    of quality.Aquat. Sci. 79 , 661–674 (2017). doi:10.1007/
    s00027-017-0527-2

  20. S. F. Stofberg, J. van Engelen, J.-P. M. Witte, S. E. van der Zee,
    Effects of root mat buoyancy and heterogeneity on floating fen
    hydrology.Ecohydrology 9 , 1222–1234 (2016). doi:10.1002/
    eco.1720

  21. C. Fritz, D. I. Campbell, L. A. Schipper, Oscillating peat surface
    levels in a restiad peatland, New Zealand—Magnitude and
    spatiotemporal variability.Hydrol. Processes 22 , 3264– 3274
    (2008). doi:10.1002/hyp.6912

  22. D. J. Greenwood, The effect of oxygen concentration on the
    decomposition of organic materials in soil.Plant Soil 14 ,
    360 – 376 (1961). doi:10.1007/BF01666294

  23. L. P. M. Lamerset al., Microbial transformations of nitrogen,
    sulfur, and iron dictate vegetation composition in wetlands: A
    review.Front. Microbiol. 3 , 156 (2012). doi:10.3389/
    fmicb.2012.00156; pmid: 22539932
    31. P. Rovira, V. R. Vallejo, Labile and recalcitrant pools of carbon
    and nitrogen in organic matter decomposing at different
    depths in soil: An acid hydrolysis approach.Geoderma 107 ,
    109 – 141 (2002). doi:10.1016/S0016-7061(01)00143-4
    32. N. van Breemen, How Sphagnum bogs down other plants.
    Trends Ecol. Evol. 10 , 270–275 (1995). doi:10.1016/0169-5347
    (95)90007-1; pmid: 21237035
    33. R. S. Clymo, The origin of acidity in Sphagnum bogs.Bryologist
    67 , 427–431 (1964). doi:10.1639/0007-2745(1964)67[427:
    TOOAIS]2.0.CO;2
    34. E. Gorham, S. J. Eisenreich, J. Ford, M. V. Santelmann, in
    Chemical Processes in Lakes(John Wiley and Sons, 1985),
    pp. 339–362.
    35. Z. Yu, J. Loisel, D. P. Brosseau, D. W. Beilman, S. J. Hunt,
    Global peatland dynamics since the Last Glacial Maximum.
    Geophys. Res. Lett. 37 , 43584 (2010). doi:10.1029/
    2010GL043584
    36. D. M. Younget al., Misinterpreting carbon accumulation rates
    in records from near-surface peat.Sci. Rep. 9 , 17939 (2019).
    doi:10.1038/s41598-019-53879-8; pmid: 31784556
    37. A. Prager, A. Barthelmes, H. Joosten, A touch of tropics in
    temperate mires: On Alder carrs and carbon cycles.Peatlands
    Int. 2 , 26–29 (2006).
    38. I. Aselmann, P. J. Crutzen, Global distribution of natural
    freshwater wetlands and rice paddies, their net primary
    productivity, seasonality and possible methane emissions.
    J. Atmos. Chem. 8 , 307–358 (1989). doi:10.1007/BF00052709
    39. C. M. Duarte, J. Cebrián, The fate of marine autotrophic
    production.Limnol. Oceanogr. 41 , 1758–1766 (1996).
    doi:10.4319/lo.1996.41.8.1758
    40. S. T. Chew, J. B. Gallagher, Accounting for black carbon lowers
    estimates of blue carbon storage services.Sci. Rep. 8 , 2553
    (2018). doi:10.1038/s41598-018-20644-2; pmid: 29416101
    41. D. C. Donatoet al., Mangroves among the most carbon-rich
    forests in the tropics.Nat. Geosci. 4 , 293–297 (2011).
    doi:10.1038/ngeo1123
    42. J. L. Breithaupt, J. M. Smoak, T. J. SmithIII, C. J. Sanders,
    A. Hoare, Organic carbon burial rates in mangrove sediments:
    Strengthening the global budget.Global Biogeochem. Cycles
    26 , 2012GB004375 (2012). doi:10.1029/2012GB004375
    43. S. Bouillonet al., Mangrove production and carbon sinks: A
    revision of global budget estimates.Global Biogeochem. Cycles
    22 , n/a (2008). doi:10.1029/2007GB003052
    44. S. Bouillon, R. M. Connolly, inEcological Connectivity Among
    Tropical Coastal Ecosystems(Springer, 2009), pp. 45–70.
    45. T. J. Boumaet al., Trade-offs related to ecosystem engineering:
    A case study on stiffness of emerging macrophytes.Ecology 86 ,
    2187 – 2199 (2005). doi:10.1890/04-1588
    46. R. J. M. Temminket al., Mimicry of emergent traits amplifies
    coastal restoration success.Nat. Commun. 11 , 3668 (2020).
    doi:10.1038/s41467-020-17438-4; pmid: 32699271
    47. M. Van de Broeket al., Long-term organic carbon
    sequestration in tidal marsh sediments is dominated by old-
    aged allochthonous inputs in a macrotidal estuary.Glob.
    Change Biol. 24 , 2498–2512 (2018). doi:10.1111/gcb.14089;
    pmid: 29431887
    48. K. Koop-Jakobsen, F. Wenzhöfer, The dynamics of plant-
    mediated sediment oxygenation inSpartina anglica
    rhizospheres—A planar optode study.Estuaries Coasts 38 ,
    951 – 963 (2015). doi:10.1007/s12237-014-9861-y
    49. M. E. Gonneea, A. Paytan, J. A. Herrera-Silveira, Tracing
    organic matter sources and carbon burial in mangrove
    sediments over the past 160 years.Estuar. Coast. Shelf Sci. 61 ,
    211 – 227 (2004). doi:10.1016/j.ecss.2004.04.015
    50. R. K. Jameset al., Maintaining tropical beaches with seagrass
    and algae: A promising alternative to engineering solutions.
    Bioscience 69 , 136–142 (2019). doi:10.1093/biosci/biy154
    51. G. S. Fivashet al., Elevated micro-topography boosts growth
    rates in Salicornia procumbens by amplifying a tidally-driven
    oxygen pump: Implications for natural recruitment and restoration.
    Ann. Bot. 125 , 353–364 (2019). doi:10.1093/aob/mcz137
    52. T. B. Atwoodet al., Predators help protect carbon stocks in
    blue carbon ecosystems.Nat. Clim. Chang. 5 , 1038– 1045
    (2015). doi:10.1038/nclimate2763
    53. L. Ren, K. Jensen, P. Porada, P. Mueller, Biota-mediated carbon
    cycling-A synthesis of biotic-interaction controls on blue
    carbon.Ecol. Lett. 25 , 521–540 (2022). doi:10.1111/ele.13940;
    pmid: 35006633
    54. L. G. Gilliset al., Potential for landscape-scale positive
    interactions among tropical marine ecosystems.Mar. Ecol.
    Prog. Ser. 503 , 289–303 (2014). doi:10.3354/meps10716
    55. C. J. T. Ladd, M. F. Duggan‐Edwards, T. J. Bouma, J. F. Pages,
    M. W. Skov, Sediment supply explains long‐term and large‐
    scale patterns in salt marsh lateral expansion and erosion.


Geophys. Res. Lett. 46 , 11178–11187 (2019). doi:10.1029/
2019GL083315


  1. C. M. Duarte, I. J. Losada, I. E. Hendriks, I. Mazarrasa, N. Marbà,
    The role of coastal plant communities for climate change
    mitigation and adaptation.Nat. Clim. Chang. 3 , 961–968 (2013).
    doi:10.1038/nclimate1970

  2. M. L. Kirwan, J. P. Megonigal, Tidal wetland stability in the face
    of human impacts and sea-level rise.Nature 504 , 53– 60
    (2013). doi:10.1038/nature12856; pmid: 24305148

  3. M. L. Kirwan, S. Temmerman, E. E. Skeehan,
    G. R. Guntenspergen, S. Fagherazzi, Overestimation of marsh
    vulnerability to sea level rise.Nat. Clim. Chang. 6 , 253– 260
    (2016). doi:10.1038/nclimate2909

  4. A. Jacotot, C. Marchand, B. E. Rosenheim, E. W. Domack,
    M. Allenbach, Mangrove sediment carbon stocks along an
    elevation gradient: Influence of the late Holocene marine
    regression (New Caledonia).Mar. Geol. 404 , 60–70 (2018).
    doi:10.1016/j.margeo.2018.07.005

  5. J. Leifeld, L. Menichetti, The underappreciated potential of
    peatlands in global climate change mitigation strategies.Nat.
    Commun. 9 , 1071 (2018). doi:10.1038/s41467-018-03406-6;
    pmid: 29540695

  6. K. B. Gedan, B. R. Silliman, M. D. Bertness, Centuries of
    human-driven change in salt marsh ecosystems.Ann. Rev. Mar.
    Sci. 1 , 117–141 (2009). doi:10.1146/annurev.
    marine.010908.163930; pmid: 21141032

  7. M. Waycottet al., Accelerating loss of seagrasses across the
    globe threatens coastal ecosystems.Proc. Natl. Acad. Sci. U.S.A.
    106 , 12377–12381 (2009). doi:10.1073/pnas.0905620106;
    pmid: 19587236

  8. Millennium Ecosystem Assessment,Ecosystems and Human
    Well-Being: Synthesis(Island Press, 2005).

  9. R. J. Orthet al., A Global Crisis for Seagrass Ecosystems.
    Bioscience 56 , 987–996 (2006). doi:10.1641/0006-3568
    (2006)56[987:AGCFSE]2.0.CO;2

  10. M. F. Adameet al., Future carbon emissions from global
    mangrove forest loss.bioRxiv15571 [Preprint] (2020).
    doi:10.1101/2020.08.27.271189

  11. C. E. Lovelock, R. Reef, Variable impacts of climate change on
    blue carbon.One Earth 3 , 195–211 (2020). doi:10.1016/
    j.oneear.2020.07.010

  12. M. R. Turetskyet al., Global vulnerability of peatlands to fire and
    carbon loss.Nat. Geosci. 8 , 11–14 (2015). doi:10.1038/ngeo2325

  13. G. Hugeliuset al., Large stocks of peatland carbon and
    nitrogen are vulnerable to permafrost thaw.Proc. Natl. Acad.
    Sci. U.S.A. 117 , 20438–20446 (2020). doi:10.1073/
    pnas.1916387117; pmid: 32778585

  14. M. R. Turetskyet al., Carbon release through abrupt
    permafrost thaw.Nat. Geosci. 13 , 138–143 (2020).
    doi:10.1038/s41561-019-0526-0

  15. K. Hergoualc’h, L. V. Verchot, Stocks and fluxes of carbon
    associated with land use change in Southeast Asian tropical
    peatlands: A review.Global Biogeochem. Cycles10.1029/
    2009GB003718 (2011). doi:10.1029/2009GB003718

  16. B. Tiemeyeret al., High emissions of greenhouse gases from
    grasslands on peat and other organic soils.Glob. Change Biol.
    22 , 4134–4149 (2016). doi:10.1111/gcb.13303; pmid: 27029402

  17. A. Güntheret al., Prompt rewetting of drained peatlands
    reduces climate warming despite methane emissions.
    Nat. Commun. 11 , 1644 (2020). doi:10.1038/s41467-020-
    15499-z; pmid: 32242055

  18. Z. Wanget al., Human-induced erosion has offset one-third of
    carbon emissions from land cover change.Nat. Clim. Chang. 7 ,
    345 – 349 (2017). doi:10.1038/nclimate3263

  19. L. Pendletonet al., Estimating global“blue carbon”emissions
    from conversion and degradation of vegetated coastal
    ecosystems.PLOS ONE 7 , e43542 (2012). doi:10.1371/journal.
    pone.0043542; pmid: 22962585

  20. P. I. Macreadieet al., Blue carbon as a natural climate solution.
    Nat. Rev. Earth Environ. 2 , 826–839 (2021). doi:10.1038/
    s43017-021-00224-1

  21. E. Bayraktarovet al., The cost and feasibility of marine coastal
    restoration.Ecol. Appl. 26 , 1055–1074 (2016). doi:10.1890/15-
    1077 ; pmid: 27509748

  22. R. S. DE Grootet al., Benefits of investing in ecosystem
    restoration.Conserv. Biol. 27 , 1286–1293 (2013). doi:10.1111/
    cobi.12158; pmid: 24112105

  23. E. Romijnet al., Land restoration in Latin America and the
    Caribbean: An overview of recent, ongoing and planned
    restoration initiatives and their potential for climate change
    mitigation.Forests 10 , 510 (2019). doi:10.3390/f10060510

  24. R. Andersenet al., An overview of the progress and challenges
    of peatland restoration in Western Europe.Restor. Ecol. 25 ,
    271 – 282 (2017). doi:10.1111/rec.12415


Temminket al.,Science 376 , eabn1479 (2022) 6 May 2022 6of7


RESEARCH | REVIEW

Free download pdf