Science - USA (2022-05-06)

(EriveltonMoraes) #1

  1. Q. Zhanget al.,Nature 543 , 705–709 (2017).

  2. P. Meyfroidt, T. K. Rudel, E. F. Lambin,Proc. Natl. Acad. Sci.
    U.S.A. 107 , 20917–20922 (2010).

  3. G. Q. Chen, M. Y. Han,Land Use Policy 49 , 118–130 (2015).

  4. Y. Yu, K. S. Feng, K. Hubacek,Glob. Environ. Change 23 ,
    1178 – 1186 (2013).

  5. C. Dalin, Y. Wada, T. Kastner, M. J. Puma,Nature 543 ,
    700 – 704 (2017).

  6. A. K. Chapagain, A. Y. Hoekstra, H. H. G. Savenije,Hydrol. Earth
    Syst. Sci. 10 , 455–468 (2006).

  7. J. Karstensen, G. P. Peters, R. M. Andrew,Environ. Res. Lett. 8 ,
    024005 (2013).

  8. D. Caro, A. LoPresti, S. J. Davis, S. Bastianoni, K. Caldeira,
    Environ. Res. Lett. 9 , 114005 (2014).

  9. E. Hansis, S. J. Davis, J. Pongratz,Global Biogeochem. Cycles
    29 , 1230–1246 (2015).

  10. S. J. Davis, J. A. Burney, J. Pongratz, K. Caldeira,Carbon
    Manag. 5 , 233–245 (2014).

  11. IPCC Working Group III Technical Support Unit,“Climate
    Change 2014: Mitigation of Climate Change”(Cambridge Univ.
    Press, 2014).

  12. S. Roeet al.,Nat. Clim. Chang. 9 , 817–828 (2019).

  13. K. M. Carlsonet al.,Nat. Clim. Chang. 7 , 63–68 (2017).

  14. P. Friedlingsteinet al.,Earth Syst. Sci. Data 11 , 1783– 1838
    (2019).

  15. M. A. Clarket al.,Science 370 , 705–708 (2020).

  16. Materials and methods are available as supplementary materials.

  17. FAO, FAOStat (2019); http://www.fao.org/faostat/en/.

  18. T. Kastner, M. Kastner, S. Nonhebel,Ecol. Econ. 70 , 1032– 1040
    (2011).

  19. P. D’Odorico, J. A. Carr, F. Laio, L. Ridolfi, S. Vandoni,Earths
    Futur. 2 , 458–469 (2014).

  20. J. Poore, T. Nemecek,Science 360 , 987–992 (2018).

  21. S. Henders, U. M. Persson, T. Kastner,Environ. Res. Lett. 10 ,
    125012 (2015).

  22. F. Pendrillet al.,Glob. Environ. Change 56 ,1–10 (2019).

  23. N. Escobaret al.,Glob. Environ. Change 62 , 102067 (2020).

  24. N. T. Hoang, K. Kanemoto,Nat. Ecol. Evol. 5 , 845–853 (2021).

  25. A. Bacciniet al.,Nat. Clim. Chang. 2 , 182–185 (2012).

  26. M. Herreroet al.,Nat. Clim. Chang. 6 , 452–461 (2016).

  27. R. Heilmayr, L. L. Rausch, J. Munger, H. K. Gibbs,Nat. Food 1 ,
    801 – 810 (2020).

  28. A. C. Soterroniet al., Expanding the Soy Moratorium to Brazil’s
    Cerrado.Sci. Adv. 5 , eaav7336 (2019).

  29. J. S. H. Lee, D. A. Miteva, K. M. Carlson, R. Heilmayr, O. Saif,
    Environ. Res. Lett. 15 , 124064 (2020).

  30. J. Assunção, C. Gandour, R. Rocha,Environ. Dev. Econ. 20 ,
    697 – 722 (2015).

  31. C. H. L. SilvaJunioret al.,Nat. Ecol. Evol. 5 , 144–145 (2021).

  32. IPCC,“Guidelines for National Greenhouse Gas Inventories”
    (IPCC, 2006).

  33. European Commission, Commission Implementing Regulation
    (EU) 2020/1208 of 7 August 2020; https://eur-lex.europa.eu/
    eli/reg_impl/2020/1208/oj.

  34. USEPA, Greenhouse Gas Reporting Program, https://www.epa.
    gov/ghgreporting.

  35. C. Dalin,Proc.Natl.Acad.Sci.U.S.A. 109 , 5989– 5994
    (2012).

  36. J. Fargione, J. Hill, D. Tilman, S. Polasky, P. Hawthorne,Science
    319 , 1235–1238 (2008).

  37. T. Searchingeret al.,Science 319 , 1238–1240 (2008).

  38. E. F. Lambin, P. Meyfroidt,Proc. Natl. Acad. Sci. U.S.A. 108 ,
    3465 – 3472 (2011).

  39. J. A. Burney, S. J. Davis, D. B. Lobell,Proc. Natl. Acad. Sci. U.S.A.
    107 , 12052–12057 (2010).

  40. A. Lambet al.,Nat. Clim. Chang. 6 , 488–492 (2016).

  41. D. Tilman, C. Balzer, J. Hill, B. L. Befort,Proc. Natl. Acad. Sci. U.S.A.
    108 , 20260–20264 (2011).

  42. E. K. H. J. zu Ermgassenet al.,Environ. Res. Lett. 15 , 035003
    (2020).

  43. J. Dumortieret al.,Environ. Res. Lett. 7 , 024023 (2012).

  44. R. Fuchset al.,Nature 567 , 451–454 (2019).

  45. J. Linet al.,Nat. Commun. 10 , 4947 (2019).


ACKNOWLEDGMENTS
The authors thank all the developers of the GTAP Data Base,
E. Hansis for making contributions to the development of the
BLUE model, and J.E.M.S. Nabel for performing initial BLUE
simulations.Funding:C.H. acknowledges support from the
Scientific Research Start-up Funds (QD2021030C) from Tsinghua
Shenzhen International Graduate School. J.A.B., F.C.M., and
S.J.D. were supported by the US National Science Foundation
and US Department of Agriculture (INFEWS grant EAR 1639318),
and S.J.D. also acknowledges a grant from the ClimateWorks


Foundation (22-2100 / 2202-802317943). Q.Z. was supported by
the National Natural Science Foundation of China (41921005). H.Z.
was supported by the National Natural Science Foundation
of China (71904097). Y.L. was supported by the National Natural
Science Foundation of China (72125010 and 71974186). R.B.J.
acknowledges support from the Gordon and Betty Moore
Foundation (Grant GBMF5439,“Advancing Understanding of the
Global Methane Cycle”).Author contributions:C.H. and S.J.D.
conceived the study. C.H., H.Z., and Y.Q. performed the analyses,
with support from Q.Z., J.P., K.H., and Y.L. on datasets, and from
S.J.D., Q.Z., J.A.B., J.P., F.C.M., and R.B.J. on analytical
approaches. C.H. and S.J.D. led the writing with input from all
coauthors. All coauthors reviewed and commented on the
manuscript.Competing interests:The authors declare no
competing interests.Data and materials availability:Production-
based estimates of land-use emissions are available at https://
sustsys.ess.uci.edu/CALUE.html. Statistics on agricultural
production and land area as well as the agricultural emissions

are curated by the FAO and freely available at http://www.fao.org/
faostat/en/. The GTAP Data Base is available at https://www.gtap.
agecon.purdue.edu/databases/. The supplementary materials
contain our results. All data central to the main claims are available
in the main text or the supplementary materials.

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abj1572
Materials and Methods
Figs. S1 to S17
Tables S1 to S3
References ( 53 – 69 )
Data S1 to S5

Submitted 23 April 2021; resubmitted 26 January 2022
Accepted 31 March 2022
10.1126/science.abj1572

CATALYSIS

The state of zinc in methanol synthesis over a


Zn/ZnO/Cu(211) model catalyst


Peter Amann^1 †, Bernhard Klötzer^2 , David Degerman^1 , Norbert Köpfle^2 ‡, Thomas Götsch^3 ,
Patrick Lömker4,1, Christoph Rameshan^5 , Kevin Ploner^2 , Djuro Bikaljevic^2 , Hsin-Yi Wang^1 ,
Markus Soldemo^1 §, Mikhail Shipilin^1 , Christopher M. Goodwin^1 , Jörgen Gladh^1 §,
Joakim Halldin Stenlid^1 ¶, Mia Börner^1 , Christoph Schlueter^4 , Anders Nilsson^1 *

The active chemical state of zinc (Zn) in a zinc-copper (Zn-Cu) catalyst during carbon dioxide/carbon
monoxide (CO 2 /CO) hydrogenation has been debated to be Zn oxide (ZnO) nanoparticles, metallic Zn,
or a Zn-Cu surface alloy. We used x-ray photoelectron spectroscopy at 180 to 500 millibar to probe
the nature of Zn and reaction intermediates during CO 2 /CO hydrogenation over Zn/ZnO/Cu(211),
where the temperature is sufficiently high for the reaction to rapidly turn over, thus creating an almost
adsorbate-free surface. Tuning of the grazing incidence angle makes it possible to achieve either
surface or bulk sensitivity. Hydrogenation of CO 2 gives preference to ZnO in the form of clusters or
nanoparticles, whereas in pure CO a surface Zn-Cu alloy becomes more prominent. The results reveal
a specific role of CO in the formation of the Zn-Cu surface alloy as an active phase that facilitates
efficient CO 2 methanol synthesis.

M


ethanol receives much interest as an
industrial chemical as well as for its
potential as an energy carrier ( 1 ). Its
gravimetric energy density is compa-
rable to that of liquid ammonia and
can easily be distributed and stored with es-
tablished technologies. To date, the leading

industrial catalyst for the CO/CO 2 hydrogena-
tion toward methanol consists of a mixture of
Cu, ZnO, and Al 2 O 3 ( 2 ). Methanol synthesis is
carried out between 150° and 300°C at pres-
sures of 50 to 100 bar but can also occur at sub-
stantially lower pressures of a few millibar ( 3 ).
Although this catalytic process is a century
old, years of intense research have aimed to
determine the mechanism and active sites.
The catalytic nature of the Zn in the catalyst
is still highly debated ( 2 ), and the mechanism
is not yet fully experimentally verified. The
addition of ZnO/Zn goes beyond the role of a
mere particle dispenser and acts as a chemi-
cally active promoter of the reaction (the ZnCu
synergistic effect). There are a number of hy-
potheses about the chemical state of Zn—more
specifically, whether it is in a metallic state
as a surface alloy ( 4 ) or a bulk alloy ( 5 ), and
whether small ZnO islands are present on the
surface ( 6 , 7 )orinbulkforms( 8 , 9 ). There is
also a proposal that mixed phases could co-
exist, either in the bulk or on the surface ( 10 ).
Additionally, Zn diffusion and Zn spillover on

SCIENCEscience.org 6 MAY 2022•VOL 376 ISSUE 6593 603


(^1) Department of Physics, Stockholm University, AlbaNova
University Center, 10691 Stockholm, Sweden.^2 Institute of
Physical Chemistry, University of Innsbruck, Innrain 52c,
6020 Innsbruck, Austria.^3 Department of Inorganic
Chemistry, Fritz Haber Institute of the Max-Planck Society,
Faradayweg 4-6, 14195 Berlin, Germany.^4 Photon Science,
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85,
22607 Hamburg, Germany.^5 Institute of Materials Chemistry,
Technische Universität Wien, Getreidemarkt 9/BC/01, 1060
Vienna, Austria.
*Corresponding author. Email: [email protected]
†Present address: Scienta Omicron AB, Danmarksgatan 22, 75323
Uppsala, Sweden.
‡Present address: Plansee SE, Metallwerk-Planseestraße 71, 6600
Reutte, Austria.
§Present address: PULSE Institute, SLAC National Accelerator
Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
¶Present address: SUNCAT Center for Interface Science and
Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill
Road, Menlo Park, CA 94025, USA.
RESEARCH | RESEARCH ARTICLES

Free download pdf