279
- Hong J, Resnick M, Behar J et al (2011) Role
of Rac1 in regulation of NOX5-S function in
Barrett’s esophageal adenocarcinoma cells. Am
J Physiol Cell Physiol 301:C413–C420
- Beales IL, Ogunwobi OO (2009) Glycine-
extended gastrin inhibits apoptosis in Barrett’s
esophageal and esophageal adenocarcinoma
cells through JAK2/STAT3 activation. J Mol
Endocrinol 42:305–318
- Kebenko M, Drenckhan A, Gros SJ et al (2015)
ErbB2 signaling activates the Hedgehog path-
way via PI3K-Akt in human esophageal ade-
nocarcinoma: identification of novel targets
for concerted therapy concepts. Cell Signal
27:373–381
- MacFarlane LA, Gu Y, Casson AG et al (2010)
Regulation of fibroblast growth factor-2 by
an endogenous antisense RNA and by argo-
naute-2. Mol Endocrinol 24:800–812
- Pierini R, Kroon PA, Guyot S et al (2008) The
procyanidin-mediated induction of apoptosis
and cell-cycle arrest in esophageal adenocar-
cinoma cells is not dependent on p21(Cip1/
WAF1). Cancer Lett 270:234–241
- Rees JR, Onwuegbusi BA, Save VE (2006)
In vivo and in vitro evidence for transform-
ing growth factor-beta1-mediated epithelial to
mesenchymal transition in esophageal adeno-
carcinoma. Cancer Res 66:9583–9590
- Wang Z, Hao Y, Lowe AW (2008) The adeno-
carcinoma-associated antigen, AGR2, promotes
tumor growth, cell migration, and cellular
transformation. Cancer Res 68:492–497
- Gentile A, Trusolino L, Comoglio PM (2008)
The Met tyrosine kinase receptor in devel-
opment and cancer. Cancer Metastasis Rev
27:85–94
- Tuynman JB, Lagarde SM, Ten Kate FJ
et al (2008) Met expression is an indepen-
dent prognostic risk factor in patients with
esophageal adenocarcinoma. Br J Cancer
98:1102–1108
- Hack SP, Bruey JM, Koeppen H (2014) HGF/
MET-directed therapeutics in gastresopha-
geal cancer: a review of clinical and biomarker
development. Oncotarget 5:2866–2880
- Jardim DL, de MeloGagliato D, Falchook
GS et al (2014) MET aberrations and c-MET
inhibitors in patients with gastric and esopha-
geal cancers in a phase I unit. Oncotarget
5:1837–1845
- Mesteri I, Schoppmann SF, Preusser M et al
(2014) Overexpression of CMET is associ-
ated with signal transducer and activator of
transcription 3 activation and diminished
prognosis in esophageal adenocarcinoma but
not in squamous cell carcinoma. Eur J Cancer
50:1354–1360
- Lennerz JK, Kwak EL, Ackerman A et al
(2011) MET amplification identifies a small
and aggressive subgroup of esophagogastric
adenocarcinoma with evidence of responsive-
ness to crizotinib. J Clin Oncol 29:4803–4810
- Watson GA, Zhang X, Stang MT et al (2006)
Inhibition of c-Met as a therapeutic strategy
for esophageal adenocarcinoma. Neoplasia
8:949–955
- Anderson MR, Harrison R, Atherfold PA et al
(2006) Met receptor signaling: a key effector in
esophageal adenocarcinoma. Clin Cancer Res
12:5936–5943
- Herrera LJ, El-Hefnawy T, Queiroz de
Oliveira PE (2005) The HGF receptor c-Met is
overexpressed in esophageal adenocarcinoma.
Neoplasia 7:75–84
- Lockwood WW, Thu KL, Lin L et al (2012)
Integrative genomics identified RFC3 as an
amplified candidate oncogene in esopha-
geal adenocarcinoma. Clin Cancer Res
18:1936–1946
- Lyros O, Rafiee P, Nie L et al (2015) Wnt/β-
Catenin signaling activation beyond robust
nuclear β-Catenin accumulation in non dys-
plastic Barrett’s esophagus: regulation via
Dickkopf-1. Neoplasia 17:598–611
- Hong YS, Kim J, Pectasides E et al (2014) Src
mutation induces acquired lapatinib resistance
in ERBB2-amplified human gastresophageal
adenocarcinoma models. PLoS One 9:e109440
- Aichler M, Elsner M, Ludyga N et al (2013)
Clinical response to chemotherapy in esopha-
geal adenocarcinoma patients is linked to
defects in mitochondria. J Pathol 230:410–419
- Sims-Mourtada J, Izzo JG, Apisarnthanarax S
et al (2006) Hedgehog: an attribute to tumor
regrowth after chemoradiotherapy and a target
to improve radiation response. Clin Cancer Res
12:6565–6572
RNAi Gene Silencing and Esophageal Adenocarcinoma