Synthetic Biology Parts, Devices and Applications

(Nandana) #1

102 5 Functional Requirements in the Program and the Cell Chassis for Next-Generation Synthetic Biology


70 Achbergerova, L. and Nahalka, J. (2011) Polyphosphate – an ancient energy
source and active metabolic regulator. Microb. Cell Fact., 10 , 63.
71 Brock, J., Rhiel, E., Beutler, M., Salman, V. et al. (2012) Unusual polyphosphate
inclusions observed in a marine Beggiatoa strain. Antonie Van Leeuwenhoek,
101 , 347–357.
72 Nikel, P.I., Chavarria, M., Martinez‐Garcia, E., Taylor, A.C. et al. (2013)
Accumulation of inorganic polyphosphate enables stress endurance and
catalytic vigour in Pseudomonas putida KT2440. Microb. Cell Fact., 12 , 50.
73 Friz, C.T. (1968) The biochemical composition of the free‐living amoebae Chaos
chaos, Amoeba dubia and Amoeba proteus. Comp. Biochem. Physiol., 26 , 81–90.
74 Hallenbeck, P.C., Abo‐Hashesh, M., and Ghosh, D. (2012) Strategies for
improving biological hydrogen production. Bioresour. Technol., 110 , 1–9.
75 Lakaniemi, A.M., Tuovinen, O.H., and Puhakka, J.A. (2013) Anaerobic
conversion of microalgal biomass to sustainable energy carriers – a review.
Bioresour. Technol., 135 , 222–231.
76 van Niel, E.W. (2016) Biological processes for hydrogen production.
Adv. Biochem. Eng. Biotechnol., 156 , 155–193.
77 Logan, B.E. and Rabaey, K. (2012) Conversion of wastes into bioelectricity and
chemicals by using microbial electrochemical technologies. Science, 337 ,
686–690.
78 Wei, N., Quarterman, J., and Jin, Y.S. (2013) Marine macroalgae: an untapped
resource for producing fuels and chemicals. Trends Biotechnol., 31 , 70–77.
79 Saratale, G.D., Saratale, R.G., Shahid, M.K., Zhen, G. et al. (2017) A
comprehensive overview on electro‐active biofilms, role of exo‐electrogens and
their microbial niches in microbial fuel cells (MFCs). Chemosphere, 178 ,
534–547.
80 Lovley, D.R. (2012) Long‐range electron transport to Fe(III) oxide via pili with
metallic‐like conductivity. Biochem. Soc. Trans., 40 , 1186–1190.
81 Malvankar, N.S. and Lovley, D.R. (2012) Microbial nanowires: a new paradigm
for biological electron transfer and bioelectronics. ChemSusChem, 5 ,
1039–1046.
82 Sure, S.K., Ackland, L.M., Torriero, A.A., Adholeya, A. et al. (2016) Microbial
nanowires: an electrifying tale. Microbiology, 162 , 2017–2028.
83 Hashimoto, M., Ichimura, T., Mizoguchi, H., Tanaka, K. et al. (2005) Cell size
and nucleoid organization of engineered Escherichia coli cells with a reduced
genome. Mol. Microbiol., 55 , 137–149.
84 Danchin, A., Guerdoux‐Jamet, P., Moszer, I., and Nitschké, P. (2000) Mapping
the bacterial cell architecture into the chromosome. Philos. Trans. R. Soc.
London, Ser. B, 355 , 179–190.
85 Fang, G., Rocha, E.P., and Danchin, A. (2008) Persistence drives gene clustering
in bacterial genomes. BMC Genomics, 9 , 4.
86 Jeong, K.S., Ahn, J., and Khodursky, A.B. (2004) Spatial patterns of transcriptional
activity in the chromosome of Escherichia coli. Genome Biol., 5 , R86.
87 Bailly‐Bechet, M., Danchin, A., Iqbal, M., Marsili, M. et al. (2006) Codon usage
domains over bacterial chromosomes. PLoS Comput. Biol., 2 , e37.
88 Worcel, A. and Burgi, E. (1972) On the structure of the folded chromosome of
Escherichia coli. J. Mol. Biol., 71 , 127–147.
Free download pdf