Synthetic Biology Parts, Devices and Applications

(Nandana) #1
References 125

nucleosome disfavoring sequences allows fine‐tune regulation of gene
expression in yeast. Nat. Genet., 44 (7), 743–750.
46 Kassir, Y., Adir, N., Boger‐Nadjar, E., Raviv, N.G., Rubin‐Bejerano, I., Sagee, S.,
and Shenhar, G. (2003) Transcriptional regulation of meiosis in budding yeast.
Int. Rev. Cytol., 224 , 111–171.
47 Johnston, M. (1987) A model fungal gene regulatory mechanism: the GAL genes
of Saccharomyces cerevisiae. Microbiol. Rev., 51 (4), 458–476.
48 Hawkins, K.M. and Smolke, C.D. (2006) The regulatory roles of the galactose
permease and kinase in the induction response of the GAL network in
Saccharomyces cerevisiae. J. Biol. Chem., 281 (19), 13 485–13 492.
49 Sikorski, R.S. and Hieter, P. (2002) A system of shuttle vectors and yeast host
strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae.
Genetics, 122 (1), 19–27.
50 Bajwa, W., Torchia, T.E., and Hopper, J.E. (1988) Yeast regulatory gene GAL3:
carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7,
GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and
Escherichia coli galactokinases. Mol. Cell. Biol., 8 (8), 3439–3447.
51 Adams, B.G. (1972) Induction of galactokinase in Saccharomyces cerevisiae:
kinetics of induction and glucose effects. J. Bacteriol., 111 (2), 308–315.
52 St John, T.P. and Davis, R.W. (1981) The organization and transcription of the
galactose gene cluster of Saccharomyces. J. Mol. Biol., 152 (2), 285–315.
53 Douglas, H.C. and Hawthorne, D.C. (1964) Enzymatic expression and genetic
linkage of genes controlling galactose utilization in Saccharomyces. Genetics,
49 , 837–844.
54 Johnston, M. and Davis, R.W. (1984) Sequences that regulate the divergent GAL1‐
GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol., 4 (8), 1440–1448.
55 West, R.W., Yocum, R.R., and Ptashne, M. (1984) Saccharomyces cerevisiae
GAL1‐GAL10 divergent promoter region: location and function of the upstream
activating sequence UASG. Mol. Cell. Biol., 4 (11), 2467–2478.
56 Nakao, J., Miyanohara, A., Toh‐e, A., and Matsubara, K. (1986) Saccharomyces
cerevisiae PHO5 promoter region: location and function of the upstream
activation site. Mol. Cell. Biol., 6 (7), 2613–2623.
57 Bajwa, W., Rudolph, H., and Hinnen, A. (1987) PHO5 upstream sequences
confer phosphate control on the constitutive PHO3 gene. Ye a s t, 3 (1), 33–42.
58 Miyanohara, A., Toh‐e, A., Nozaki, C., Hamada, F., Ohtomo, N., and Matsubara,
K. (1983) Expression of hepatitis B surface antigen gene in yeast. Proc. Natl.
Acad. Sci. U.S.A., 80 (1), 1–5.
59 Jeppsson, M., Johansson, B., Jensen, P.R., Hahn‐Hägerdal, B., and Gorwa‐
Grauslund, M.F. (2003) The level of glucose‐6‐phosphate dehydrogenase activity
strongly influences xylose fermentation and inhibitor sensitivity in recombinant
Saccharomyces cerevisiae strains. Ye a s t, 20 (15), 1263–1272.
60 Robinson, A.S., Bockhaus, J.A., Voegler, A.C., and Wittrup, K.D. (1996)
Reduction of BiP levels decreases heterologous protein secretion in
Saccharomyces cerevisiae. J. Biol. Chem., 271 (17), 10 017–10 022.
61 Thiele, D.J. and Hamer, D.H. (1986) Tandemly duplicated upstream control
sequences mediate copper‐induced transcription of the Saccharomyces
cerevisiae copper‐metallothionein gene. Mol. Cell. Biol., 6 (4), 1158–1163.

Free download pdf