Synthetic Biology Parts, Devices and Applications

(Nandana) #1
References 257

4 Steen, E.J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., Del
Cardayre, S.B., and Keasling, J.D. (2010) Microbial production of fatty‐acid‐
derived fuels and chemicals from plant biomass. Nature, 463 , 559–562.
http://www.ncbi.nlm.nih.gov/pubmed/20111002 (accessed 23 March 2014).
5 Qian, Z.‐G., Xia, X.‐X., and Lee, S.Y. (2009) Metabolic engineering of
Escherichia coli for the production of putrescine: a four carbon diamine.
Biotechnol. Bioeng., 104 , 651–662. http://www.ncbi.nlm.nih.gov/
pubmed/19714672 (accessed 23 March 2014).
6 Qian, Z.‐G., Xia, X.‐X., and Lee, S.Y. (2011) Metabolic engineering of
Escherichia coli for the production of cadaverine: a five carbon diamine.
Biotechnol. Bioeng., 108 , 93–103. http://www.ncbi.nlm.nih.gov/
pubmed/20812259 (accessed 23 March 2014).
7 Beekwilder, J., Wolswinkel, R., Jonker, H., Hall, R., de Vos, C.H.R., and Bovy, A.
(2006) Production of resveratrol in recombinant microorganisms. Appl. Environ.
Microbiol., 72 , 5670–5672. http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=1538726&tool=pmcentrez&rendertype=abstract (accessed 23 March 2014).
8 Dueber, J.E., Wu, G.C., Malmirchegini, G.R., Moon, T.S., Petzold, C.J., Ullal,
A.V., Prather, K.L.J., and Keasling, J.D. (2009) Synthetic protein scaffolds provide
modular control over metabolic flux. Nat. Biotechnol., 27 , 753–759. http://www.
ncbi.nlm.nih.gov/pubmed/19648908 (accessed 23 March 2014).
9 Delebecque, C.J., Lindner, A.B., Silver, P.A., and Aldaye, F.A. (2011) Organization
of intracellular reactions with rationally designed RNA assemblies. Science
(New York, N.Y.), 333 , 470–474. http://www.ncbi.nlm.nih.gov/pubmed/21700839
(accessed 23 March 2014).
10 Lee, J.H., Jung, S.‐C., Bui, L.M., Kang, K.H., Song, J.‐J., and Kim, S.C. (2013)
Improved production of l‐threonine in Escherichia coli by use of a DNA scaffold
system. Appl. Environ. Microbiol., 79 , 774–782. http://www.ncbi.nlm.nih.gov/
pubmed/23160128 (accessed 23 March 2014).
11 Conrado, R.J., Wu, G.C., Boock, J.T., Xu, H., Chen, S.Y., Lebar, T., Turnšek, J.,
Tomšič, N., Avbelj, M., Gaber, R., Koprivnjak, T., Mori, J., Glavnik, V., Vovk, I.,
Benčina, M., Hodnik, V., Anderluh, G., Dueber, J.E., Jerala, R., and DeLisa, M.P.
(2012) DNA‐guided assembly of biosynthetic pathways promotes improved
catalytic efficiency. Nucleic Acids Res., 40 , 1879–1889. http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=3287197&tool=pmcentrez&
rendertype=abstract (accessed 21 May 2013).
12 Zhang, Y., Li, S.‐Z., Li, J., Pan, X., Cahoon, R.E., Jaworski, J.G., Wang, X., Jez,
J.M., Chen, F., and Yu, O. (2006) Using unnatural protein fusions to engineer
resveratrol biosynthesis in yeast and Mammalian cells. J. Am. Chem. Soc., 128 ,
13030–13031. http://www.ncbi.nlm.nih.gov/pubmed/17017764 (accessed 23
March 2014).
13 Niemeyer, C.M., Koehler, J., and Wuerdemann, C. (2002) DNA‐directed
assembly of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN
oxidoreductase and luciferase. ChemBioChem, 3 , 242–245. http://www.ncbi.
nlm.nih.gov/pubmed/11921405 (accessed 23 March 2014).
14 Müller, J. and Niemeyer, C.M. (2008) DNA‐directed assembly of artificial
multienzyme complexes. Biochem. Biophys. Res. Commun., 377 , 62–67. http://
http://www.ncbi.nlm.nih.gov/pubmed/18823945 (accessed 23 March 2014).

Free download pdf