Synthetic Biology Parts, Devices and Applications

(Nandana) #1

258 12 Metabolic Channeling Using DNA as a Scaffold


15 Wilner, O.I., Weizmann, Y., Gill, R., Lioubashevski, O., Freeman, R., and
Willner, I. (2009) Enzyme cascades activated on topologically programmed DNA
scaffolds. Nat. Nanotechnol., 4 , 249–254. http://www.ncbi.nlm.nih.gov/
pubmed/19350036 (accessed 23 March 2014).
16 Watts, K.T., Lee, P.C., and Schmidt‐Dannert, C. (2006) Biosynthesis of plant‐
specific stilbene polyketides in metabolically engineered Escherichia coli.
BMC Biotech., 6 , 22. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid
=1435877&tool=pmcentrez&rendertype=abstract (accessed 9 April 2013).
17 Altaras, N.E. and Cameron, D.C. (1999) Metabolic engineering of a 1,2‐
propanediol pathway in Escherichia coli. Appl. Environ. Microbiol., 65 ,
1180–1185. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=91161&
tool=pmcentrez&rendertype=abstract (accessed 23 March 2014).
18 Martin, V.J.J., Pitera, D.J., Withers, S.T., Newman, J.D., and Keasling, J.D. (2003)
Engineering a mevalonate pathway in Escherichia coli for production of
terpenoids. Nat. Biotechnol., 21 , 796–802. http://www.ncbi.nlm.nih.gov/
pubmed/12778056 (accessed 6 March 2013).
19 Laity, J.H., Lee, B.M., and Wright, P.E. (2001) Zinc finger proteins: new insights
into structural and functional diversity. Curr. Opin. Struct. Biol., 11 , 39–46.
http://www.ncbi.nlm.nih.gov/pubmed/11179890 (accessed 23 March 2014).
20 Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T.,
Nickstadt, A., and Bonas, U. (2009) Breaking the code of DNA binding
specificity of TAL‐type III effectors. Science (New York, N.Y.), 326 , 1509–1512.
http://www.ncbi.nlm.nih.gov/pubmed/19933107 (accessed 19 March 2014).
21 Fu, F. and Voytas, D.F. (2013) Zinc Finger Database (ZiFDB) v2.0: a
comprehensive database of C 2 H 2 zinc fingers and engineered zinc finger arrays.
Nucleic Acids Res., 41 , D452–D455. http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=3531203&tool=pmcentrez&rendertype=abstract
(accessed 24 March 2014).
22 Greisman, H.A. and Pabo, C.O. (1997) A general strategy for selecting high‐
affinity zinc finger proteins for diverse DNA target sites. Science (New York,
N .Y. ), 275 , 657–661. http://www.ncbi.nlm.nih.gov/pubmed/9005850
(accessed 23 March 2014).
23 Rebar, E.J. and Pabo, C.O. (1994) Zinc finger phage: affinity selection of
fingers with new DNA‐binding specificities. Science (New York, N.Y.),
263 , 671–673. http://www.ncbi.nlm.nih.gov/pubmed/8303274 (accessed
23 March 2014).
24 Maeder, M.L., Thibodeau‐Beganny, S., Osiak, A., Wright, D.A., Anthony, R.M.,
Eichtinger, M., Jiang, T., Foley, J.E., Winfrey, R.J., Townsend, J.A., Unger‐
Wallace, E., Sander, J.D., Müller‐Lerch, F., Fu, F., Pearlberg, J., Göbel, C., Dassie,
J.P., Pruett‐Miller, S.M., Porteus, M.H., Sgroi, D.C., Iafrate, A.J., Dobbs, D.,
McCray, P.B., Cathomen, T., Voytas, D.F., and Joung, J.K. (2008) Rapid “open‐
source” engineering of customized zinc‐finger nucleases for highly efficient gene
modification. Mol. Cell, 31 , 294–301. http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=2535758&tool=pmcentrez&rendertype=abstract
(accessed 23 March 2014).
25 Hurt, J.A., Thibodeau, S.A., Hirsh, A.S., Pabo, C.O., and Joung, J.K. (2003)
Highly specific zinc finger proteins obtained by directed domain shuffling and
Free download pdf