298 14 Sequestered: Design and Construction of Synthetic Organelles
13 Keasling, J.D. (2008) Synthetic biology for synthetic chemistry. ACS Chem. Biol.,
3 (1), 64–76.
14 Savage, D.F., Way, J.C., and Silver, P.A. (2008) Defossiling fuel: how synthetic
biology can transform biofuel production. ACS Chem. Biol., 3 (1), 13–16.
15 Dueber, J.E., Wu, G.C., Malmirchegini, G.R., Moon, T.S., Petzold, C.J., Ullal,
A.V., Prather, K.L.J., and Keasling, J.D. (2009) Synthetic protein scaffolds provide
modular control over metabolic flux. Nat. Biotechnol., 27 (8), 753–759.
16 Sachdeva, G., Garg, A., Godding, D., Way, J.C., and Silver, P.A. (2014) In vivo
co‐localization of enzymes on RNA scaffolds increases metabolic production in
a geometrically dependent manner. Nucleic Acids Res., 42 , 9493–9503.
17 Agapakis, C.M., Boyle, P.M., and Silver, P.A. (2012) Natural strategies for the
spatial optimization of metabolism in synthetic biology. Nat. Chem. Biol., 8 (6),
527–535.
18 Lee, H., DeLoache, W.C., and Dueber, J.E. (2012) Spatial organization of
enzymes for metabolic engineering. Metab. Eng., 14 (3), 242–251.
19 Chen, A.H. and Silver, P.A. (2012) Designing biological compartmentalization.
Trends Cell Biol., 22 (12), 662–670.
20 Diekmann, Y. and Pereira‐Leal, J.B. (2013) Evolution of intracellular
compartmentalization. Biochem. J, 449 (2), 319–331.
21 Mullock, B.M. and Luzio, J.P. (2005) Theory of organelle biogenesis, in
The Biogenesis of Cellular Organelles, Springer, Boston, MA, pp. 1–18.
22 Liberton, M., Berg, R.H., Heuser, J., Roth, R., and Pakrasi, H.B. (2006)
Ultrastructure of the membrane systems in the unicellular cyanobacterium
Synechocystis sp. strain PCC 6803. Protoplasma, 227 (2–4), 129–138.
23 Mangan, N.M., Flamholz, A., Hood, R.D., Milo, R., and Savage, D.F. (2016)
pH determines the energetic efficiency of the cyanobacterial CO 2 concentrating
mechanism. Proc. Natl. Acad. Sci. U.S.A., 113 , 5354–5362. doi: 10.1073/
pnas.1525145113
24 Rafelski, S.M. and Marshall, W.F. (2008) Building the cell: design principles of
cellular architecture. Nat. Rev. Mol. Cell Biol., 9 (8), 593–602.
25 Gaertner, F.H. (1978) Unique catalytic properties of enzyme clusters.
Trends Biochem. Sci, 3 (1), 63–65.
26 Conrado, R.J., Varner, J.D., and DeLisa, M.P. (2008) Engineering the spatial
organization of metabolic enzymes: mimicking nature’s synergy. Curr. Opin.
Biotechnol., 19 (5), 492–499.
27 Kerfeld, C.A., Heinhorst, S., and Cannon, G.C. (2010) Bacterial
microcompartments. Annu. Rev. Microbiol., 64 (1), 391–408.
28 Cannon, G.C., Bradburne, C.E., Aldrich, H.C., Baker, S.H., Heinhorst, S., and
Shively, J.M. (2001) Microcompartments in prokaryotes: carboxysomes and
related polyhedra. Appl. Environ. Microbiol., 67 (12), 5351–5361.
29 Axen, S.D., Erbilgin, O., and Kerfeld, C.A. (2014) A taxonomy of bacterial
microcompartment loci constructed by a novel scoring method. PLoS Comput.
Biol., 10 , e1003898.
30 Dou, Z., Heinhorst, S., Williams, E.B., Murin, C.D., Shively, J.M., and Cannon,
G.C. (2008) CO 2 fixation kinetics of Halothiobacillus neapolitanus mutant
carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional
barrier for CO 2. J. Biol. Chem., 283 (16), 10377–10384.