302 14 Sequestered: Design and Construction of Synthetic Organelles
75 Heinhorst, S., Cannon, G.C., and Shively, J.M. (2006) Carboxysomes and
carboxysome‐like inclusions, in Complex Intracellular Structures in Prokaryotes,
Microbiology Monographs (ed. J.M. Shively), Springer‐Verlag, Berlin,
pp. 141–164.
76 Milo, R., Jorgensen, P., Moran, U., Weber, G., and Springer, M. (2010)
BioNumbers – the database of key numbers in molecular and cell biology.
Nucleic Acids Res., 38 (Database issue), D750–D753.
77 Chowdhury, C., Chun, S., Sawaya, M.R., Yeates, T.O., and Bobik, T.A. (2016)
The function of the PduJ microcompartment shell protein is determined by the
genomic position of its encoding gene. Mol. Microbiol., 101 , 770–783. doi:
10.1111/mmi.13423
78 Havemann, G.D. and Bobik, T.A. (2003) Protein content of polyhedral organelles
involved in coenzyme B 12 ‐dependent degradation of 1,2‐propanediol in
Salmonella enterica serovar Typhimurium LT2. J. Bacteriol., 185 (17),
5086–5095.
79 Lin, M.T., Occhialini, A., Andralojc, P.J., Devonshire, J., Hines, K.M., Parry,
M.A.J. et al. (2014) β‐Carboxysomal proteins assemble into highly organized
structures in Nicotiana chloroplasts. Plant J., 79 , 1–12.
80 Douglas, T. and Young, M. (2006) Viruses: making friends with old foes. Science,
312 (5775), 873–875.
81 Rome, L.H. and Kickhoefer, V.A. (2013) Development of the vault particle as a
platform technology. ACS Nano, 7 (2), 889–902.
82 Worsdorfer, B., Woycechowsky, K.J., and Hilvert, D. (2011) Directed evolution of
a protein container. Science, 331 (6017), 589–592.
83 Sutter, M., Boehringer, D., Gutmann, S., Günther, S., Prangishvili, D., Loessner,
M.J., Stetter, K.O., Weber‐Ban, E., and Ban, N. (2008) Structural basis of enzyme
encapsulation into a bacterial nanocompartment. Nat. Struct. Mol. Biol., 15 (9),
939–947.
84 Bode, S.A., Minten, I.J., Nolte, R.J.M., and Cornelissen, J.J.L.M. (2011) Reactions
inside nanoscale protein cages. Nanoscale, 3 (6), 2376–2389.
85 Maity, B., Fujita, K., and Ueno, T. (2015) Use of the confined spaces of apo‐
ferritin and virus capsids as nanoreactors for catalytic reactions. Curr. Opin.
Chem. Biol., 25 , 88–97. doi: 10.1016/j.cbpa.2014.12.026
86 Valdés‐Stauber, N. and Scherer, S. (1994) Isolation and characterization of
Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl. Environ.
Microbiol. Am. Soc. Microbiol., 60 (10), 3809–3814.
87 Giessen, T.W. and Silver, P.A. (2017) Widespread distribution of encapsulin
nanocompartments reveals functional diversity. Nat. Microbiol., 2 , 17029. doi:
10.1038/nmicrobiol.2017.29
88 Radford, D.R. (2014) Understanding the encapsulins: prediction and
characterization of phage capsid‐like nanocompartments in prokaryotes.
University of Toronto. Dissertation.
89 Akita, F., Chong, K.T., Tanaka, H., Yamashita, E., Miyazaki, N., Nakaishi, Y.,
Suzuki, M., Namba, K., Ono, Y., Tsukihara, T., and Nakagawa, A. (2007) The
crystal structure of a virus‐like particle from the hyperthermophilic archaeon
Pyrococcus furiosus provides insight into the evolution of viruses. J. Mol. Biol.,
368 (5), 1469–1483.