346 16 Applying Advanced DNA Assembly Methods to Generate Pathway Libraries
30 Ramon, A. and Smith, H.O. (2011) Single-step linker-based combinatorial
assembly of promoter and gene cassettes for pathway engineering. Biotechnol.
Lett, 33 , 549–555.
31 Coussement, P., Maertens, J., Beauprez, J., Van Bellegem, W., and De Mey, M.
(2014) One step DNA assembly for combinatorial metabolic engineering.
Metab. Eng., 23 , 70–77.
32 Lee, M.E., Aswani, A., Han, A.S., Tomlin, C.J., and Dueber, J.E. (2013)
Expression-level optimization of a multi-enzyme pathway in the absence of a
high-throughput assay. Nucleic Acids Res., 41 , 10668–10678.
33 Zelcbuch, L., Antonovsky, N., Bar-Even, A., Levin-Karp, A., Barenholz, U. et al.
(2013) Spanning high-dimensional expression space using ribosome-binding site
combinatorics. Nucleic Acids Res., 41 , e98.
34 Xu, P., Vansiri, A., Bhan, N., and Koffas, M.A. (2012) EPathBrick: a synthetic
biology platform for engineering metabolic pathways in E. Coli. ACS Synth.
Biol., 1 , 256–266.
35 Xu, P., Gu, Q., Wang, W., Wong, L., Bower, A.G. et al. (2013) Modular
optimization of multi-gene pathways for fatty acids production in E. coli.
Nat. Commun., 4 , 1409.
36 Sleight, S.C. and Sauro, H.M. (2013) Randomized BioBrick assembly: a novel
DNA assembly method for randomizing and optimizing genetic circuits and
metabolic pathways. ACS Synth. Biol., 2 , 506–518.
37 Wingler, L.M. and Cornish, V.W. (2011) Reiterative recombination for the in vivo
assembly of libraries of multigene pathways. Proc. Natl. Acad. Sci. U.S.A.,
108 , 15135–15140.
38 Zhu, C., Naqvi, S., Breitenbach, J., Sandmann, G., Christou, P. et al. (2008)
Combinatorial genetic transformation generates a library of metabolic
phenotypes for the carotenoid pathway in maize. Proc. Natl. Acad. Sci. U.S.A.,
105 , 18232–18237.
39 Farre, G., Naqvi, S., Sanahuja, G., Bai, C., Zorrilla-Lopez, U. et al. (2012)
Combinatorial genetic transformation of cereals and the creation of metabolic
libraries for the carotenoid pathway. Methods Mol. Biol., 847 , 419–435.
40 Du, J., Yuan, Y., Si, T., Lian, J., and Zhao, H. (2012) Customized optimization of
metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids
Res., 40 , e142.
41 Kim, B., Du, J., Eriksen, D.T., and Zhao, H. (2013) Combinatorial design of a
highly efficient xylose utilizing pathway for cellulosic biofuels production in
Saccharomyces cerevisiae. Appl. Environ. Microbiol., 79 , 931–941.
42 Jin, Y.S. and Jeffries, T.W. (2003) Changing flux of xylose metabolites
by altering expression of xylose reductase and xylitol dehydrogenase in
recombinant Saccharomyces cerevisiae. Appl. Biochem. Biotechnol., 105–108,
277–786.
43 Karhumaa, K., Fromanger, R., Hahn-Hagerdal, B., and Gorwa-Grauslund, M.F.
(2007) High activity of xylose reductase and xylitol dehydrogenase improves
xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol.
Biotechnol., 73 , 1039–1046.
44 Jin, Y.S., Ni, H., Laplaza, J.M., and Jeffries, T.W. (2003) Optimal growth and
ethanol production from xylose by recombinant Saccharomyces cerevisiae