Noncommutative Mathematics for Quantum Systems

(Dana P.) #1

144 Noncommutative Mathematics for Quantum Systems


Letm=n(k− 1 ) +l. Apply now the conclusion of Exercise 2.2.6
to the mapΨ−m^1 :Ψm(ON) → ON. There existd∈Nand unital
completely positive mapsγ:Ψm(ON)→Mdandη:Md → ON


such that for alla∈Ψm(Ω(ln))we have


‖η◦γ(a)−Ψ−m^1 (a)‖<

e
2

.

Letγ ̃:MNm⊗ON→Mdbe a unital completely positive extension
ofγ(see Theorem 2.1.7). Consider the following diagram:


ON Ψm(ON)


MNm⊗ON

Ψm(ON) ON

MNm⊗ON

Md

MNm⊗MCl

Ψm -

@id⊗ψ 0
@
@R

id⊗φ 0





HγHj 1
η

Ψ−m^1 -

*γ ̃

HH
HH
HH
HH
HH
HH
Hj

ψ











*

φ

LetX∈Ap,q(p,q≤l) and letj∈N 0 ,j≤n−1. Then


‖φ◦ψ(ρj(X))−ρj(X)‖
=‖η◦γ ̃◦(id⊗φ 0 ◦ψ 0 )◦Ψm(ρj(X))−(Ψ−m^1 ◦Ψm)(ρj(X))‖
=‖η◦γ ̃◦(id⊗φ 0 ◦ψ 0 )◦Ψm(ρj(X))−η◦γ ̃◦Ψm(ρj(X))
+ η◦γ ̃◦Ψm(ρj(X))−(Ψ−m^1 ◦Ψm)(ρj(X))‖

≤‖(id⊗φ 0 ◦ψ 0 )◦Ψm(ρj(X))−Ψm(ρj(X))‖+

e
2

.

Lemma 2.3.2 implies thatρj(X) ∈ Fp+j(k− 1 ),q+j(k− 1 ). Assume for


example thatp>q. Then, as‖X‖≤1, it follows from Lemma 2.3.3
that


‖(φ◦ψ)(ρj(X))−ρj(X)‖≤



∥∥

μ∈Jp−q

Tμ⊗

(
(φ 0 ◦ψ 0 )(Sμ)−Sμ

)∥∥
∥+

e
2

≤ ∑
μ∈Jp−q

‖Tμ‖‖(φ 0 ◦ψ 0 )(Sμ)−Sμ‖<Np−q

e
4 Nl

+

e
2

=e

(asSμ∈Ap−q,0∈Ωl). Hence, we have shown that


(φ,ψ,MNm⊗MCl)∈CPA(ON,Ω(ln),e). (2.3.5)
Free download pdf