Quantum Dynamical Systems from the Point of View of Noncommutative Mathematics 155
ψn(ι(a)ul) =n
∑
k= 1
1 ≤k−l≤nek−l,k⊗αl−k(a). (2.4.2)In particularψn(ι(a)ul) ∈ Mn(A)and Remark 2.4.1 implies that
ψn:AoαZ→Mn(A). The mapφn:Mn(A)→AoαZis defined
by the following explicit formula:
φn(er,s⊗a)=
1
nu−rι(a)us=1
nι(αr(a))us−r,r,s=1,... ,n,a∈A.(2.4.3)Unitality ofψnis easy to check. Complete positivity follows from
the fact thatψn can be written as a composition of completely
positive mapsι(n) andx 7→ V∗xV, where x ∈ Mn⊗B(^2 (Z) ⊗H)≈B(Cn⊗^2 (Z)⊗H)andV∈B(^2 (Z)⊗H;Cn⊗^2 (Z)⊗H),
withV = [u^1 ,···,un]. The defining formulas (2.4.2) and (2.4.3)
and the definition ofβ ̃allow us to check easily that we have
ψn◦ ̃β=β(n)◦ψn, β ̃◦φn=φn◦β(n). (2.4.4)Further fora∈Aandl∈Zwe haveφn(
ψn(ι(a)ul))
=φn
n
∑
k= 1
1 ≤k−l≤nek−l,k⊗αl−k(a)
=n
∑
k= 1
1 ≤k−l≤nφn(
ek−l,k⊗αl−k(a))=1
nn
∑
k= 1
1 ≤k−l≤nι(αk−l(αl−k(a)))ul=1
nn
∑
k= 1
1 ≤k−l≤nι(a)ul=n−|l|
nι(a)ul.This fact together with Remark 2.4.1 implies (remember that unital
completely positive maps are automatically contractive) that for
eachx∈AoαZ
lim
n→∞‖φn(ψn(x))−x‖=0.