Noncommutative Mathematics for Quantum Systems

(Dana P.) #1

36 Noncommutative Mathematics for Quantum Systems


Letb∈ B,ε(b) =0. If allφtare states, then we haveφt(b∗b)≥ 0
for allt≥0 and therefore


L(b∗b) =lim
t↘ 0

1
t

(
φt(b∗b)−ε(b∗b)

)
=lim
t↘ 0

φt(b∗b)
t

≥0.

Similarly,Lis hermitian, since allφtare hermitian.


We will call a linear functional satisfying condition (ii) of the
preceding Proposition agenerating functional. Lemma 1.5.7 and
Proposition 1.5.8 show that Levy processes can also be ́


characterized by their generating functionalL= ddt



∣∣
t= 0

φt.

1.5.3 The Schurmann triple of a L ̈ evy process ́


LetDbe a pre-Hilbert space. Then we denote byL(D)the set of all
linear operators onDthat have an adjoint defined everywhere on
D, that is,


L(D) =

{
X:D→Dlinear

∣∣
∣∣there existsX

∗:D→Dlinear s.t.

〈u,Xv〉=〈X∗u,v〉for allu,v∈D

}
.

L(D)is clearly a unital∗-algebra.


Definition 1.5.9 LetBbe a unital∗-algebra equipped with a unital


hermitian characterε:B →C(that is,ε( 1 ) =1,ε(b∗) =ε(b), and
ε(ab) =ε(a)ε(b)for alla,b∈ B). ASch ̈urmann triple on(B,ε)is a
triple(ρ,η,L)consisting of



  • a unital∗-representationρ:B →L(D)ofBon some pre-Hilbert
    spaceD,

  • aρ-ε-1-cocycleη:B →D, that is, a linear mapη:B →Dsuch
    that


η(ab) =ρ(a)η(b) +η(a)ε(b) (1.5.2)

for alla,b∈B, and


  • a hermitian linear functionalL : B → Cthat has the bilinear
    mapB×B 3(a,b)7→ −〈η(a∗),η(b)〉as aε-ε-2-coboundary, that
    is, that satisfies


−〈η(a∗),η(b)〉=∂L(a,b) =ε(a)L(b)−L(ab) +L(a)ε(b) (1.5.3)

for alla,b∈B.
Free download pdf