Independence and L ́evy Processes in Quantum Probability 69Proposition 1.7.21 Letμandνbe two probability measures onR+,
ν 6 =δ 0 , and let Mybe the self-adjoint operator on L^2 (R+×R+,μ⊗ν)
defined by multiplication with the coordinate function(x,y)7→y. Define
Sxon L^2 (R+×R+,μ⊗ν)by
(Sxψ)(x,y) = (x− 1 )∫R+ψ(x,y)dν(y) +ψ(x,y) (1.7.5)on
DomSx=
{
ψ∈L^2 (R+×R+,μ⊗ν);∫R+xψ(x,y)dν(y)∈L^2 (R+,μ)}
.Then Sx− 1 and Myare monotonically independent w.r.t. to the constant
function, and the operator z−
√
SxMy√
Sxhas a bounded inverse for all
z∈C\R, given by
(
(z−√
SxMy√
Sx)−^1 ψ)
(x,y) =ψ(x,y) +g(x)
z−y+h(x).(1.7.6)where
g(x) =√
x−x
( 1 −x)zGν(z) +x∫R+ψ(x,y)dν(y)+z(x− 1 )
( 1 −x)zGν(z) +x∫R+ψ(x,y)
z−ydν(y),h(x) =(√
x− 1 )^2 Gν(z)
( 1 −x)zGν(z) +x∫R+ψ(x,y)dν(y)+√
x−x
( 1 −x)zGν(z) +x∫R+ψ(x,y)
z−ydν(y).Proof Fixz∈C+. Letx>0, then
Imz
z−x=−xImz
(Rez−x)^2 + (Imz)^2<0,and therefore
ImzGν(z) =Im∫R+z
z−xdν(x)<0.