Noncommutative Mathematics for Quantum Systems

(Dana P.) #1
Independence and L ́evy Processes in Quantum Probability 69

Proposition 1.7.21 Letμandνbe two probability measures onR+,
ν 6 =δ 0 , and let Mybe the self-adjoint operator on L^2 (R+×R+,μ⊗ν)
defined by multiplication with the coordinate function(x,y)7→y. Define
Sxon L^2 (R+×R+,μ⊗ν)by


(Sxψ)(x,y) = (x− 1 )


R+

ψ(x,y)dν(y) +ψ(x,y) (1.7.5)

on


DomSx=


{
ψ∈L^2 (R+×R+,μ⊗ν);


R+

xψ(x,y)dν(y)∈L^2 (R+,μ)

}
.

Then Sx− 1 and Myare monotonically independent w.r.t. to the constant


function, and the operator z−



SxMy


Sxhas a bounded inverse for all
z∈C\R, given by


(
(z−


SxMy


Sx)−^1 ψ

)
(x,y) =

ψ(x,y) +g(x)
z−y

+h(x).

(1.7.6)

where


g(x) =


x−x
( 1 −x)zGν(z) +x


R+

ψ(x,y)dν(y)

+

z(x− 1 )
( 1 −x)zGν(z) +x


R+

ψ(x,y)
z−y

dν(y),

h(x) =

(


x− 1 )^2 Gν(z)
( 1 −x)zGν(z) +x


R+

ψ(x,y)dν(y)

+


x−x
( 1 −x)zGν(z) +x


R+

ψ(x,y)
z−y

dν(y).

Proof Fixz∈C+. Letx>0, then


Im

z
z−x

=−

xImz
(Rez−x)^2 + (Imz)^2

<0,

and therefore


ImzGν(z) =Im


R+

z
z−x

dν(x)<0.
Free download pdf