Innovations_in_Molecular_Mechanisms_and_Tissue_Engineering_(Stem_Cell_Biology_and_Regenerative_Medicine)

(Brent) #1

16 0



  1. Yoshikawa M, Suzumura A, Tamaru T et al (1999) Effects of phosphodiesterase inhibitors on
    cytokine production by microglia. Mult Scler 5:126–133. doi: 10.1177/135245859900500210

  2. Zhu J, Mix E, Winblad B (2006) The antidepressant and antiinfl ammatory effects of rolipram in
    the central nervous system. CNS Drug Rev 7:387–398. doi: 10.1111/j.1527-3458.2001.tb00206.x

  3. Beaumont E, Whitaker CM, Burke DA et al (2009) Effects of rolipram on adult rat oligoden-
    drocytes and functional recovery after contusive cervical spinal cord injury. Neuroscience
    163:985–990. doi: 10.1016/j.neuroscience.2009.07.039

  4. Whitaker CM, Beaumont E, Wells MJ et al (2008) Rolipram attenuates acute oligodendro-
    cyte death in the adult rat ventrolateral funiculus following contusive cervical spinal cord
    injury. Neurosci Lett 438:200–204. doi: 10.1016/j.neulet.2008.03.087

  5. Hätinen S, Sairanen M, Sirviö J, Jolkkonen J (2008) Improved sensorimotor function by
    rolipram following focal cerebral ischemia in rats. Restor Neurol Neurosci 26:493–499

  6. Sasaki T, Kitagawa K, Omura-Matsuoka E et al (2007) The phosphodiesterase inhibitor
    rolipram promotes survival of newborn hippocampal neurons after ischemia. Stroke 38:1597–

  7. doi: 10.1161/STROKEAHA.106.476754

  8. Atkins CM, Kang Y, Furones C et al (2012) Postinjury treatment with rolipram increases
    hemorrhage after traumatic brain injury. J Neurosci Res 90:1861–1871. doi: 10.1002/jnr.23069

  9. Atkins CM, Cepero ML, Kang Y et al (2013) Effects of early rolipram treatment on
    histopathological outcome after controlled cortical impact injury in mice. Neurosci Lett
    532:1–6. doi: 10.1016/j.neulet.2012.10.019

  10. Koopmans GC, Deumens R, Buss A et al (2009) Acute rolipram/thalidomide treatment
    improves tissue sparing and locomotion after experimental spinal cord injury. Exp Neurol
    216:490–498. doi: 10.1016/j.expneurol.2009.01.005

  11. George A, Marziniak M, Schäfers M et al (2000) Thalidomide treatment in chronic constric-
    tive neuropathy decreases endoneurial tumor necrosis factor-α, increases interleukin-10 and
    has long-term effects on spinal cord dorsal horn met-enkephalin. Pain 88:267–275.
    doi: 10.1016/S0304-3959(00)00333-X

  12. Wang Y, Gu J, Wang J et al (2012) BDNF and NT-3 expression by using glucocorticoid-
    induced bicistronic expression vector pGC-BDNF-IRES-NT3 protects apoptotic cells in a
    cellular injury model. Brain Res 1448:137–143. doi: 10.1016/j.brainres.2012.02.007

  13. Hyakkoku K, Nakajima Y, Izuta H et al (2009) Thalidomide protects against ischemic neuro-
    nal damage induced by focal cerebral ischemia in mice. Neuroscience 159:760–769.
    doi: 10.1016/j.neuroscience.2008.12.043

  14. Papa S, Caron I, Erba E et al (2016) Early modulation of pro-infl ammatory microglia by
    minocycline loaded nanoparticles confers long lasting protection after spinal cord injury.
    Biomaterials 75:13–24. doi: 10.1016/j.biomaterials.2015.10.015

  15. Sanchez Mejia RO, Ona VO, Li M, Friedlander RM (2001) Minocycline reduces traumatic
    brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction.
    Neurosurgery 48:1393–1401. doi: 10.1227/00006123-200106000-00051

  16. Bye N, Habgood MD, Callaway JK et al (2007) Transient neuroprotection by minocycline
    following traumatic brain injury is associated with attenuated microglial activation but no
    changes in cell apoptosis or neutrophil infi ltration. Exp Neurol 204:220–233. doi: 10.1016/j.
    expneurol.2006.10.013

  17. Wells JEA, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline
    facilitates signifi cant recovery from spinal cord injury in mice. Brain 126:1628–1637.
    doi: 10.1093/brain/awg178

  18. Lee SM, Yune TY, Kim SJ et al (2003) Minocycline reduces cell death and improves func-
    tional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20:1017–1027.
    doi: 10.1089/089771503770195867

  19. Homsi S, Federico F, Croci N et al (2009) Minocycline effects on cerebral edema: relations
    with infl ammatory and oxidative stress markers following traumatic brain injury in mice.
    Brain Res 1291:122–132. doi: 10.1016/j.brainres.2009.07.031

  20. Kelso ML, Scheff NN, Scheff SW, Pauly JR (2011) Melatonin and minocycline for combina-
    torial therapy to improve functional and histopathological defi cits following traumatic brain
    injury. Neurosci Lett 488:60–64. doi: 10.1016/j.neulet.2010.11.003


A. Roussas et al.
Free download pdf