Innovations_in_Molecular_Mechanisms_and_Tissue_Engineering_(Stem_Cell_Biology_and_Regenerative_Medicine)

(Brent) #1

16 4



  1. Kubinová S, Syková E (2010) Nanotechnologies in regenerative medicine. Minim Invasive
    Ther Allied Technol 19:144–156. doi: 10.3109/13645706.2010.481398

  2. Madigan NN, McMahon S, O’Brien T et al (2009) Current tissue engineering and novel
    therapeutic approaches to axonal regeneration following spinal cord injury using polymer
    scaffolds. Respir Physiol Neurobiol 169:183–199. doi: 10.1016/j.resp.2009.08.015

  3. Wu M, Yuan H, Li K, Qiu D-L (2015) Cellular transplantation-based evolving treatment
    options in spinal cord injury. Cell Biochem Biophys 71:1–8. doi: 10.1007/s12013-014-0174-3

  4. Perale G, Rossi F, Sundstrom E et al (2011) Hydrogels in spinal cord injury repair strategies.
    ACS Chem Neurosci 2:336–345. doi: 10.1021/cn200030w

  5. Aurand ER, Lampe KJ, Bjugstad KB (2011) Defi ning and designing polymers and hydrogels
    for neural tissue engineering. Neurosci Res 72:199–213. doi: 10.1016/j.neures.2011.12.005

  6. Tsai EC, Dalton PD, Shoichet MS, Tator CH (2006) Matrix inclusion within synthetic hydrogel
    guidance channels improves specifi c supraspinal and local axonal regeneration after complete
    spinal cord transection. Biomaterials 27:519–533. doi: 10.1016/j.biomaterials.2005.07.025

  7. Woerly S, Petrov P, Syková E et al (1999) Neural tissue formation within porous hydrogels
    implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion
    studies. Tissue Eng 5:467–488. doi: 10.1089/ten.1999.5.467

  8. Straley KS, Foo CWP, Heilshorn SC (2010) Biomaterial design strategies for the treatment of
    spinal cord injuries. J Neurotrauma 27:1–19. doi: 10.1089/neu.2009.0948

  9. Hynes SR, Rauch MF, Bertram JP, Lavik EB (2009) A library of tunable poly(ethylene gly-
    col)/poly(L-lysine) hydrogels to investigate the material cues that infl uence neural stem cell
    differentiation. J Biomed Mater Res A 89:499–509. doi: 10.1002/jbm.a.31987

  10. Dillon GP, Sridharan A, Ranieri JP, Bellamkonda RV (1998) The infl uence of physical struc-
    ture and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Ed
    9:1049–1069. doi: 10.1163/156856298X00325

  11. Varon S (1979) The culture of chick embryo dorsal root ganglionic cells on polylysine-coated
    plastic. Neurochem Res 4:155–173. doi: 10.1007/BF00964141

  12. Crompton KE, Goud JD, Bellamkonda RV et al (2007) Polylysine-functionalised thermore-
    sponsive chitosan hydrogel for neural tissue engineering. Biomaterials 28:441–449.
    doi: 10.1016/j.biomaterials.2006.08.044

  13. Dadsetan M, Knight AM, Lu L et al (2009) Stimulation of neurite outgrowth using positively
    charged hydrogels. Biomaterials 30:3874–3881. doi: 10.1016/j.biomaterials.2009.04.018

  14. Young T-H, Tu H-R, Chan C-C et al (2009) The enhancement of dermal papilla cell aggrega-
    tion by extracellular matrix proteins through effects on cell-substratum adhesivity and cell
    motility. Biomaterials 30:5031–5040. doi: 10.1016/j.biomaterials.2009.05.065

  15. Ryan PL, Foty RA, Kohn J, Steinberg MS (2001) Tissue spreading on implantable substrates
    is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc Natl Acad Sci U S
    A 98:4323–4327. doi: 10.1073/pnas.071615398

  16. Young T-H, Lee C-Y, Chiu H-C et al (2008) Self-assembly of dermal papilla cells into induc-
    tive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle
    regeneration. Biomaterials 29:3521–3530. doi: 10.1016/j.biomaterials.2008.05.013

  17. Kundu AK, Khatiwala CB, Putnam AJ (2009) Extracellular matrix remodeling, integrin
    expression, and downstream signaling pathways infl uence the osteogenic differentiation of
    mesenchymal stem cells on poly(lactide-co-glycolide) substrates. Tissue Eng Part A 15:273–

  18. doi: 10.1089/ten.tea.2008.0055

  19. Liu JF, Chen YM, Yang JJ et al (2011) Dynamic behavior and spontaneous differentiation of
    mouse embryoid bodies on hydrogel substrates of different surface charge and chemical
    structures. Tissue Eng Part A 17:2343–2357. doi: 10.1089/ten.TEA.2011.0034

  20. Leach JB, Brown XQ, Jacot JG et al (2007) Neurite outgrowth and branching of PC12 cells
    on very soft substrates sharply decreases below a threshold of substrate rigidity. J Neural Eng
    4:26–34. doi: 10.1088/1741-2560/4/2/003

  21. Gunn JW, Turner SD, Mann BK (2005) Adhesive and mechanical properties of hydrogels
    infl uence neurite extension. J Biomed Mater Res A 72:91–97. doi: 10.1002/jbm.a.30203


A. Roussas et al.
Free download pdf