Innovations_in_Molecular_Mechanisms_and_Tissue_Engineering_(Stem_Cell_Biology_and_Regenerative_Medicine)

(Brent) #1
169


  1. Emerich DF, Winn SR, Harper J et al (1994) Implants of polymer-encapsulated human NGF-
    secreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic
    basal forebrain neurons. J Comp Neurol 349:148–164. doi: 10.1002/cne.903490110

  2. Liu YY (1999) Transplants of fi broblasts genetically modifi ed to express BDNF promote
    regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci
    19:4370–4387

  3. Kabu S, Gao Y, Kwon BK, Labhasetwar V (2015) Drug delivery, cell-based therapies, and
    tissue engineering approaches for spinal cord injury. J Control Release 219:141–154.
    doi: 10.1016/j.jconrel.2015.08.060

  4. Yang H, Liu C-C, Wang C-Y et al (2015) Therapeutical strategies for spinal cord injury and
    a promising autologous astrocyte-based therapy using effi cient reprogramming techniques.
    Mol Neurobiol. doi: 10.1007/s12035-015-9157-7

  5. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced
    pluripotent stem cells. Nat Rev Cancer 11:268–277. doi: 10.1038/nrc3034

  6. Réthelyi M, Horváth-Oszwald E, Boros C (2008) Caudal end of the rat spinal dorsal horn.
    Neurosci Lett 445:153–157. doi: 10.1016/j.neulet.2008.08.070

  7. Boros C, Lukácsi E, Horváth-Oszwald E, Réthelyi M (2008) Neurochemical architecture
    of the fi lum terminale in the rat. Brain Res 1209:105–114. doi: 10.1016/j.brainres.2008.
    02.029

  8. Varghese M, Olstorn H, Murrell W, Langmoen IA (2010) Exploring atypical locations of
    mammalian neural stem cells: the human fi lum terminale. Arch Ital Biol 148:85–94.
    doi: 10.4449/aib.v148i2.1134

  9. Arvidsson L, Fagerlund M, Jaff N et al (2011) Distribution and characterization of progenitor
    cells within the human fi lum terminale. PLoS One 6, e27393. doi: 10.1371/journal.pone.
    0027393

  10. Jha RM, Chrenek R, Magnotti LM, Cardozo DL (2013) The isolation, differentiation, and
    survival in vivo of multipotent cells from the postnatal rat fi lum terminale. PLoS One 8,
    e65974. doi: 10.1371/journal.pone.0065974

  11. Slovinska L, Szekiova E, Blasko J et al (2015) Comparison of dynamic behavior and matura-
    tion of neural multipotent cells derived from different spinal cord developmental stages: An
    in vitro study. Acta Neurobiol Exp (Wars) 75:107–114

  12. Chen G, Hu YR, Wan H et al (2010) Functional recovery following traumatic spinal cord
    injury mediated by a unique polymer scaffold seeded with neural stem cells and Schwann
    cells. Chin Med J 123:2424–2431

  13. Parr AM, Kulbatski I, Zahir T et al (2008) Transplanted adult spinal cord-derived neural
    stem/progenitor cells promote early functional recovery after rat spinal cord injury.
    Neuroscience 155:760–770. doi: 10.1016/j.neuroscience.2008.05.042

  14. Pfeifer K, Vroemen M, Caioni M et al (2006) Autologous adult rodent neural progenitor cell
    transplantation represents a feasible strategy to promote structural repair in the chronically
    injured spinal cord. Regen Med 1:255–266. doi: 10.2217/17460751.1.2.255

  15. Teng YD, Lavik EB, Qu X et al (2002) Functional recovery following traumatic spinal cord
    injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad
    Sci U S A 99:3024–3029. doi: 10.1073/pnas.052678899

  16. Nemati SN, Jabbari R, Hajinasrollah M et al (2014) Transplantation of adult monkey neural
    stem cells into a contusion spinal cord injury model in rhesus macaque monkeys. Cell
    J 16:117–130

  17. Lladó J, Haenggeli C, Maragakis NJ et al (2004) Neural stem cells protect against glutamate-
    induced excitotoxicity and promote survival of injured motor neurons through the secretion
    of neurotrophic factors. Mol Cell Neurosci 27:322–331. doi: 10.1016/j.mcn.2004.07.010

  18. Lu P, Jones L, Snyder E, Tuszynski M (2003) Neural stem cells constitutively secrete neuro-
    trophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol
    181:115–129. doi: 10.1016/S0014-4886(03)00037-2

  19. Anderson L, Caldwell MA (2007) Human neural progenitor cell transplants into the subtha-
    lamic nucleus lead to functional recovery in a rat model of Parkinson’s disease. Neurobiol Dis
    27:133–140. doi: 10.1016/j.nbd.2007.03.015


7 Regenerative Strategies for the Central Nervous System


http://www.ebook3000.com
Free download pdf