Innovations_in_Molecular_Mechanisms_and_Tissue_Engineering_(Stem_Cell_Biology_and_Regenerative_Medicine)

(Brent) #1
171


  1. Wilkins A, Majed H, Layfi eld R et al (2003) Oligodendrocytes Promote Neuronal Survival
    and Axonal Length by Distinct Intracellular Mechanisms: A Novel Role for Oligodendrocyte-
    Derived Glial Cell Line-Derived Neurotrophic Factor. J Neurosci 23:4967–4974

  2. Erceg S, Ronaghi M, Oria M et al (2010) Transplanted oligodendrocytes and motoneuron
    progenitors generated from human embryonic stem cells promote locomotor recovery after
    spinal cord transection. Stem Cells 28:1541–1549. doi: 10.1002/stem.489

  3. Chen L-X, Ma S-M, Zhang P et al (2015) Neuroprotective effects of oligodendrocyte pro-
    genitor cell transplantation in premature rat brain following hypoxic-ischemic injury. PLoS
    One 10, e0115997. doi: 10.1371/journal.pone.0115997

  4. Mehrabi S, Eftekhari S, Moradi F et al (2013) Cell therapy in spinal cord injury: a mini-
    reivew. Basic Clin Neurosci 4:172–176

  5. Xu XM, Guénard V, Kleitman N, Bunge MB (1995) Axonal regeneration into Schwann cell-
    seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol
    351:145–160. doi: 10.1002/cne.903510113

  6. Chen A, Xu XM, Kleitman N, Bunge MB (1996) Methylprednisolone administration
    improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal
    cord. Exp Neurol 138:261–276. doi: 10.1006/exnr.1996.0065

  7. Pinzon A, Calancie B, Oudega M, Noga BR (2001) Conduction of impulses by axons
    regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci
    Res 64:533–541. doi: 10.1002/jnr.1105

  8. Guest JD, Hiester ED, Bunge RP (2005) Demyelination and Schwann cell responses adjacent
    to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol 192:384–

  9. doi: 10.1016/j.expneurol.2004.11.033

  10. Pearse DD, Sanchez AR, Pereira FC et al (2007) Transplantation of Schwann cells and/or
    olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon associa-
    tion, and functional recovery. Glia 55:976–1000. doi: 10.1002/glia.20490

  11. Takami T, Oudega M, Bates ML et al (2002) Schwann cell but not olfactory ensheathing glia
    transplants improve hindlimb locomotor performance in the moderately contused adult rat
    thoracic spinal cord. J Neurosci 22:6670–6681

  12. Kamada T, Koda M, Dezawa M et al (2011) Transplantation of human bone marrow stromal
    cell-derived Schwann cells reduces cystic cavity and promotes functional recovery after con-
    tusion injury of adult rat spinal cord. Neuropathology 31:48–58. doi: 10.1111/j.1440-
    1789.2010.01130.x

  13. Bhatheja K, Field J (2006) Schwann cells: origins and role in axonal maintenance and regen-
    eration. Int J Biochem Cell Biol 38:1995–1999. doi: 10.1016/j.biocel.2006.05.007

  14. Olson HE, Rooney GE, Gross L et al (2009) Neural Stem Cell– and Schwann Cell–Loaded
    Biodegradable Polymer Scaffolds Support Axonal Regeneration in the Transected Spinal
    Cord. Tissue Eng Part A 15:1797–1805. doi: 10.1089/ten.tea.2008.0364

  15. Afshari FT, Kwok JC, Fawcett JW (2010) Astrocyte-produced ephrins inhibit schwann cell
    migration via VAV2 signaling. J Neurosci 30:4246–4255. doi: 10.1523/JNEUROSCI.3351-09.2010

  16. Sekiya I, Larson BL, Smith JR et al (2002) Expansion of human adult stem cells from bone
    marrow stroma: conditions that maximize the yields of early progenitors and evaluate their
    quality. Stem Cells 20:530–541. doi: 10.1634/stemcells.20-6-530

  17. Dasari VR, Veeravalli KK, Dinh DH (2014) Mesenchymal stem cells in the treatment of
    spinal cord injuries: a review. World J Stem Cells 6:120–133. doi: 10.4252/wjsc.v6.i2.120

  18. Kim S, Honmou O, Kato K et al (2006) Neural differentiation potential of peripheral blood- and
    bone-marrow-derived precursor cells. Brain Res 1123:27–33. doi: 10.1016/j.brainres.2006.09.044

  19. Xu H, Miki K, Ishibashi S et al (2010) Transplantation of neuronal cells induced from human
    mesenchymal stem cells improves neurological functions after stroke without cell fusion.
    J Neurosci Res 88:3598–3609. doi: 10.1002/jnr.22501

  20. Cho S-R, Kim YR, Kang H-S et al (2009) Functional recovery after the transplantation of
    neurally differentiated mesenchymal stem cells derived from bone barrow in a rat model of
    spinal cord injury. Cell Transplant 18:1359–1368. doi: 10.3727/096368909X475329


7 Regenerative Strategies for the Central Nervous System


http://www.ebook3000.com
Free download pdf