Innovations_in_Molecular_Mechanisms_and_Tissue_Engineering_(Stem_Cell_Biology_and_Regenerative_Medicine)

(Brent) #1

172



  1. Osaka M, Honmou O, Murakami T et al (2010) Intravenous administration of mesenchymal
    stem cells derived from bone marrow after contusive spinal cord injury improves functional
    outcome. Brain Res 1343:226–235. doi: 10.1016/j.brainres.2010.05.011

  2. Karussis D, Kassis I, Kurkalli BGS, Slavin S (2008) Immunomodulation and neuroprotection
    with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple scle-
    rosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci 265:131–135.
    doi: 10.1016/j.jns.2007.05.005

  3. Titomanlio L, Kavelaars A, Dalous J et al (2011) Stem cell therapy for neonatal brain injury:
    Perspectives and Challenges. Ann Neurol 70:698–712. doi: 10.1002/ana.22518

  4. Syková E, Jendelová P, Urdzíková L, et al. Bone marrow stem cells and polymer hydrogels–
    two strategies for spinal cord injury repair. Cell Mol Neurobiol 26:1113–1129. doi: 10.1007/
    s10571-006-9007-2

  5. van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ (2010) Repeated mesenchymal stem
    cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and matura-
    tion of new neurons and oligodendrocytes leading to restoration of damage, corticospinal
    motor tract activity, and sensorimotor function. J Neurosci 30:9603–9611. doi: 10.1523/
    JNEUROSCI.1835-10.2010

  6. Mahmood A, Lu D, Chopp M (2004) Marrow stromal cell transplantation after traumatic
    brain injury promotes cellular proliferation within the brain. Neurosurgery 55

  7. Okazaki T, Magaki T, Takeda M et al (2008) Intravenous administration of bone marrow stro-
    mal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function
    following ischemia in rats. Neurosci Lett 430:109–114. doi: 10.1016/j.neulet.2007.10.046

  8. Quertainmont R, Cantinieaux D, Botman O et al (2012) Mesenchymal stem cell graft
    improves recovery after spinal cord injury in adult rats through neurotrophic and pro-
    angiogenic actions. PLoS One 7, e39500. doi: 10.1371/journal.pone.0039500

  9. Ide C, Nakai Y, Nakano N et al (2010) Bone marrow stromal cell transplantation for treatment of
    sub-acute spinal cord injury in the rat. Brain Res 1332:32–47. doi: 10.1016/j.brainres.2010.03.043

  10. Franssen EHP, de Bree FM, Verhaagen J (2007) Olfactory ensheathing glia: their contribution
    to primary olfactory nervous system regeneration and their regenerative potential following
    transplantation into the injured spinal cord. Brain Res Rev 56:236–258. doi: 10.1016/j.
    brainresrev.2007.07.013

  11. Raisman G, Li Y (2007) Repair of neural pathways by olfactory ensheathing cells. Nat Rev
    Neurosci 8:312–319. doi: 10.1038/nrn2099

  12. Ramón-Cueto A, Plant GW, Avila J, Bunge MB (1998) Long-distance axonal regeneration in
    the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants.
    J Neurosci 18:3803–3815

  13. Li Y (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing
    cells. Science 277:2000–2002. doi: 10.1126/science.277.5334.2000

  14. Fouad K, Schnell L, Bunge MB et al (2005) Combining Schwann cell bridges and olfactory-
    ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete tran-
    section of the spinal cord. J Neurosci 25:1169–1178. doi: 10.1523/JNEUROSCI.3562-04.2005

  15. Hospital CMU Implantation of olfactor ensheathing cells (OECs) (2011) In: ClinicalTrials.
    gov [Internet]. National Library of Medicine, Bethesda. https://clinicaltrials.gov/ct2/show/
    NCT02034669. Accessed 27 Jan 2016

  16. Wroclaw Medical University Transplantation of Autologous Olfactor Ensheathing Cells in
    Complete Human Spinal Cord Injury (2010) In: ClinicalTrials.gov [Internet]. National
    Library of Medicine, Bethesda. https://clinicaltrials.gov/ct2/show/NCT0123. Accessed 27
    Jan 2016

  17. Leu S, Lin Y-C, Yuen C-M et al (2010) Adipose-derived mesenchymal stem cells markedly
    attenuate brain infarct size and improve neurological function in rats. J Transl Med 8:63.
    doi: 10.1186/1479-5876-8-63

  18. Ra JC, Shin IS, Kim SH et al (2011) Safety of intravenous infusion of human adipose tissue-
    derived mesenchymal stem cells in animals and humans. Stem Cells Dev 20:1297–1308.
    doi: 10.1089/scd.2010.0466


A. Roussas et al.
Free download pdf