Innovations_in_Molecular_Mechanisms_and_Tissue_Engineering_(Stem_Cell_Biology_and_Regenerative_Medicine)

(Brent) #1
173


  1. Yan Y, Ma T, Gong K et al (2014) Adipose-derived mesenchymal stem cell transplantation
    promotes adult neurogenesis in the brains of Alzheimer’s disease mice. Neural Regen Res
    9:798–805. doi: 10.4103/1673-5374.131596

  2. Kang SK, Jun ES, Bae YC, Jung JS (2003) Interactions between human adipose stromal cells
    and mouse neural stem cells in vitro. Brain Res Dev Brain Res 145:141–149

  3. Oh JS, Kim KN, An SS et al (2011) Cotransplantation of mouse neural stem cells (mNSCs)
    with adipose tissue-derived mesenchymal stem cells improves mNSC survival in a rat spinal
    cord injury model. Cell Transplant 20:837–849. doi: 10.3727/096368910X539083

  4. Oh JS, Park IS, Kim KN et al (2012) Transplantation of an adipose stem cell cluster in a
    spinal cord injury. Neuroreport 23

  5. Kolar MK, Kingham PJ, Novikova LN et al (2014) The therapeutic effects of human adipose-
    derived stem cells in a rat cervical spinal cord injury model. Stem Cells Dev 23:1659–1674.
    doi: 10.1089/scd.2013.0416

  6. Zhou Z, Chen Y, Zhang H et al (2013) Comparison of mesenchymal stromal cells from
    human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy
    15:434–448. doi: 10.1016/j.jcyt.2012.11.015

  7. Reid AJ, Sun M, Wiberg M et al (2011) Nerve repair with adipose-derived stem cells protects
    dorsal root ganglia neurons from apoptosis. Neuroscience 199:515–522. doi: 10.1016/j.
    neuroscience.2011.09.064

  8. Zaminy A, Shokrgozar MA, Sadeghi Y et al (2013) Transplantation of Schwann Cells
    Differentiated from Adipose Stem Cells Improves Functional Recovery in Rat Spinal Cord
    Injury. Arch Iran Med 16:533–541

  9. Biotechnology T, JSC Transplantation of Autologous Adipose Derived Stem Cells (ADSCs)
    in Spinal Cord Injury Treatment. In: ClinicalTrials.gov [Internet]. National Library of
    Medicine, Bethesda. https://clinicaltrials.gov/ct2/show/NCT0203669NLMIdent

  10. Choy DKS, Nga VDW, Lim J et al (2013) Brain tissue interaction with three-dimensional,
    honeycomb polycaprolactone-based scaffolds designed for cranial reconstruction following
    traumatic brain injury. Tissue Eng Part A 19:2382–2389. doi: 10.1089/ten.TEA.2012.0733

  11. Sato Y, Nakanishi K, Hayakawa M et al (2008) Reduction of brain injury in neonatal hypoxic-
    ischemic rats by intracerebroventricular injection of neural stem/progenitor cells together
    with chondroitinase ABC. Reprod Sci 15:613–620. doi: 10.1177/1933719108317299

  12. Shi W, Nie D, Jin G et al (2012) BDNF blended chitosan scaffolds for human umbilical cord
    MSC transplants in traumatic brain injury therapy. Biomaterials 33:3119–3126. doi: 10.1016/j.
    biomaterials.2012.01.009

  13. Nakaguchi K, Jinnou H, Kaneko N et al (2012) Growth factors released from gelatin hydro-
    gel microspheres increase new neurons in the adult mouse brain. Stem Cells Int 2012:915160.
    doi: 10.1155/2012/915160

  14. Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR (2012) Combination of vascu-
    lar endothelial and fi broblast growth factor 2 for induction of neurogenesis and angiogenesis
    after traumatic brain injury. J Mol Neurosci 47:166–172. doi: 10.1007/s12031-012-9706-8

  15. Johnson PJ, Tatara A, McCreedy DA et al (2010) Tissue-engineered fi brin scaffolds contain-
    ing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter
    6:5127–5137. doi: 10.1039/c0sm00173b

  16. Wilems TS, Pardieck J, Iyer N, Sakiyama-Elbert SE (2015) Combination therapy of stem cell
    derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord
    injury. Acta Biomater 28:23–32. doi: 10.1016/j.actbio.2015.09.018

  17. Xiong Y, Zhu J-X, Fang Z-Y et al (2012) Coseeded Schwann cells myelinate neurites from
    differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers. Int J Nanomedicine
    7:1977–1989. doi: 10.2147/IJN.S30706

  18. Xia L, Wan H, Hao S et al (2013) Co-transplantation of neural stem cells and Schwann cells
    within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected
    rat spinal cord. Chin Med J (Engl) 126:909–917

  19. Li Y, Yu Z (2014) Progress in application of the combination of neural stem cells and Schwann
    cells for nerve repairing. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 28:1006–1009


7 Regenerative Strategies for the Central Nervous System


http://www.ebook3000.com
Free download pdf