Innovations_in_Molecular_Mechanisms_and_Tissue_Engineering_(Stem_Cell_Biology_and_Regenerative_Medicine)

(Brent) #1

12


greater resolution to overturn or confi rm fundamental ideas as well as develop new


lines of investigation to pursue. Progress towards complete genome assemblies will


be a challenging but is an essential resource for future studies.


Developing new genetic tools to follow specifi c cellular movements, interactions

and contributions in all regenerating tissues is necessary to drive the model forward.


Particular focus will evolve towards identifying taxon-specifi c genes or molecules


with known orthologues through next-generation sequencing or candidate based


approaches. Emphasis will be placed on combining knock-down genetics with gain


of function assays unique to the salamander system to defi ne molecular mecha-


nisms. Research efforts in this area will enable the development of in vitro and


in vivo gain of function assays in mammals with the eventual goal of translating


these fi ndings for the treatment of human diseases and injuries.


References


  1. Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism
    to therapy. Nat Med 20:857–869. doi: 10.1038/nm.3653

  2. Goss RJ (2013) Principles of regeneration. Academic, New York

  3. Dinsmore CE (2007) A history of regeneration research. Cambridge University Press,
    Cambridge

  4. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell
    21:172–185. doi: 10.1016/j.devcel.2011.06.016

  5. Carlson BM (2011) Principles of regenerative biology. Academic, Burlington, MA

  6. Stocum DL (2012) Regenerative Biology and Medicine, 2nd edn. Academic, San Diego

  7. Reiß C, Olsson L, Hoßfeld U (2015) The history of the oldest self-sustaining laboratory animal:
    150 years of axolotl research. J Exp Zool B Mol Dev Evol 324:393–404. doi: 10.1002/jez.b.22617

  8. Kumar A, Simon A (2015) Salamanders in regeneration research. Humana Press, New York,
    10.1007/978-1-4939-2495-0

  9. Fröbisch NB, Bickelmann C, Witzmann F (2014) Early evolution of limb regeneration in
    tetrapods: evidence from a 300-million-year-old amphibian. Proc Biol Sci 281:20141550.
    doi: 10.1098/rspb.2014.1550

  10. Godwin JW, Brockes JP (2006) Regeneration, tissue injury and the immune response. J Anat
    209:423–432. doi: 10.1111/j.1469-7580.2006.00626.x

  11. Godwin JW, Rosenthal N (2014) Scar free wound healing in amphibians: immunological
    infl uences on regenerative success. Differentiation 87:66–75. doi: 10.1016/j.diff.2014.02.002

  12. Garza-Garcia AA, Driscoll PC, Brockes JP (2010) Evidence for the local evolution of mecha-
    nisms underlying limb regeneration in salamanders. Integr Comp Biol 50:528–535.
    doi: 10.1093/icb/icq022

  13. Spallanzani L (1769) An essay on animal reproductions. In: Spallanzani L (ed) An essay on
    animal reproductions (translated from the italian). Becket and Hondt, London, pp 68–82

  14. Thornton CS (1958) The inhibition of limb regeneration in urodele larvae by localized irra-
    diation with ultraviolet light. J Exp Zool 137:153–179. doi: 10.1002/jez.1401370108

  15. Tornier G (1906) Kampf der Gewebe im Regenerat bei Begünstigung der Hautregeneration.
    Archiv für Entwicklungsmechanik der Organismen 22:348–369. doi: 10.1007/BF02162806

  16. Godlewski E (1928) Untersuchungen über Auslösung und Hemmung der Regeneration beim
    Axolotl. Wilhelm Roux Arch Entwickl Mech Org 114:108–143

  17. Thornton CS (1954) The relation of epidermal innervation to limb regeneration in Ambystoma
    larvae. J Exp Zool 127:577–601. doi: 10.1002/jez.1401270307


R.J. Debuque and J.W. Godwin

http://www.ebook3000.com
Free download pdf