Table 1.4 Dimensionless numbers in fluid mechanics
Dimensionless
number Details Formula
Reynolds Number Inertial force/Viscous force
convective momentum/viscous
momentum
Forced Convection
Re¼ρUL=η¼UL=ν
Prandtl Number
(heat)
Prandtl-Schmidt
Number (mass)
Momentum/Species diffusivity
Used to determine fluid or heat or
mass transfer boundary layer
thickness
Prheat¼ν=α¼ηCP=K
Prmass¼Sc¼ν=D¼η=ρD
Pe ́clet Number
(heat)
Pe ́clet Number
(mass)
Convection transport rate/Diffusion
transportation rate
Peheat¼RePr¼UL=α
α¼k=ρCP
PeMass¼RePr¼UL=D
Nusselt Number
(heat)
Nusselt-Sherwood
Number (mass)
Length scale/Diffusion boundary
layer thickness
Used to determine the heat (h) or
mass (hD) transfer coefficient
Nu¼ fεRe PrðÞ^1 =^3
hi
= 2
Nuheat¼hL=kfluid
NuMass¼hDL=Dfluid
L¼As=Pm
Grashof Number
(heat)
Grashof Number
(mass)
Natural convection buoyancy force/
Viscous force
Used to calculate Re for buoyant
flow
Controls the lengthscale to natural
convection boundary layer thick-
ness
Natural Convection
Grheat¼gβðÞTsTbL^3 =ν^2
GrMass¼gβCðÞCasCaaL^3 =ν^2
β¼ðÞ∂ρ=∂CαT,P
hi
=ρ
Rayleigh Number
(heat)
Rayleigh Number
(mass)
Natural convection/Diffusive heat
or mass transport
Used to determine the transition to
turbulence
Raheat¼GrPr¼gβΔðÞTL^3 =να
Ramass¼GrPr¼gβCðÞΔCL^3 =νD
Knudsen Number
(to analyze extent
of continuum)
Slip length/Macroscopic length Kn¼β=L
Richardson
Number
Buoyancy/Flow gradient Ri¼gðÞΔρ=ρU^2
E€otv€os (Eo) or
Bond Number
(Bo)
Body forces/Surface tension
Used together with Morton Number
to determine shape of drops or bub-
bles in surrounding fluid or contin-
uous phase
Eo¼Bo¼ ðÞΔρgL^3
=σ
Capillary Number Viscous forces/Interfacial forces Ca¼ηU=σ
Elasticity Number Elastic effects/Inertial effects El¼ θη=ρR^2 ¼Wi=Re
Weissenberg
Number
Viscous forces/Elastic forces Wi¼γ’:ts
Deborah Number Stress relaxation time/Time of
observation
ts/to
1 Fundamentals of Fluidics 5