Table 1.4 Dimensionless numbers in fluid mechanics
Dimensionless
number Details Formula
Reynolds Number Inertial force/Viscous force
convective momentum/viscous
momentum
Forced ConvectionRe¼ρUL=η¼UL=νPrandtl Number
(heat)
Prandtl-Schmidt
Number (mass)Momentum/Species diffusivity
Used to determine fluid or heat or
mass transfer boundary layer
thicknessPrheat¼ν=α¼ηCP=K
Prmass¼Sc¼ν=D¼η=ρDPe ́clet Number
(heat)
Pe ́clet Number
(mass)Convection transport rate/Diffusion
transportation ratePeheat¼RePr¼UL=α
α¼k=ρCP
PeMass¼RePr¼UL=DNusselt Number
(heat)
Nusselt-Sherwood
Number (mass)Length scale/Diffusion boundary
layer thickness
Used to determine the heat (h) or
mass (hD) transfer coefficientNu¼ fεRe PrðÞ^1 =^3hi
= 2
Nuheat¼hL=kfluid
NuMass¼hDL=Dfluid
L¼As=Pm
Grashof Number
(heat)
Grashof Number
(mass)Natural convection buoyancy force/
Viscous force
Used to calculate Re for buoyant
flow
Controls the lengthscale to natural
convection boundary layer thick-
ness
Natural ConvectionGrheat¼gβðÞTsTbL^3 =ν^2
GrMass¼gβCðÞCasCaaL^3 =ν^2
β¼ðÞ∂ρ=∂CαT,Phi
=ρRayleigh Number
(heat)
Rayleigh Number
(mass)Natural convection/Diffusive heat
or mass transport
Used to determine the transition to
turbulenceRaheat¼GrPr¼gβΔðÞTL^3 =να
Ramass¼GrPr¼gβCðÞΔCL^3 =νDKnudsen Number
(to analyze extent
of continuum)Slip length/Macroscopic length Kn¼β=LRichardson
NumberBuoyancy/Flow gradient Ri¼gðÞΔρ=ρU^2E€otv€os (Eo) or
Bond Number
(Bo)Body forces/Surface tension
Used together with Morton Number
to determine shape of drops or bub-
bles in surrounding fluid or contin-
uous phaseEo¼Bo¼ ðÞΔρgL^3
=σCapillary Number Viscous forces/Interfacial forces Ca¼ηU=σ
Elasticity Number Elastic effects/Inertial effects El¼ θη=ρR^2 ¼Wi=Re
Weissenberg
NumberViscous forces/Elastic forces Wi¼γ’:tsDeborah Number Stress relaxation time/Time of
observationts/to1 Fundamentals of Fluidics 5