- Kim J-Y, Fluri DA, Marchan R, Boonen K, Mohanty S, Singh P, Hammad S, Landuyt B,
Hengstler JG, Kelm JM, Hierlemann A, Frey O (2015) 3D spherical microtissues and
microfluidic technology for multi-tissue experiments and analysis. J Biotechnol 205:24–35 - Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Tren Cell
Biol 21(12):745–754 - Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013) Microfluidic heart on a chip for
higher throughput pharmacological studies. Lab Chip 13(18):3599–3608 - Lee SA, da No Y, Kang E, Ju J, Kim DS, Lee SH (2013) Spheroid-based three-dimensional
liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab
Chip 13(18):3529–3537 - Jang K-J, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh K-Y, Ingber DE (2013)
Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.
Integr Biol 5(9):1119–1129 - Griep LM, Wolbers F, De Wagenaar B, Ter Braak PM, Weksler BB, Romero IA, Couraud PO,
Vermes I, Van Der Meer AD, Van den Berg A (2013) BBB on chip: microfluidic platform to
mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices
15(1):145–150 - Shen F, Li X, Li PCH (2014) Study of flow behaviors on single-cell manipulation and shear
stress reduction in microfluidic chips using computational fluid dynamics simulations.
Biomicrofluidics 8(1):014109. doi:10.1063/1.4866358 - Raj A, van Oudenaarden A (2008) Stochastic gene expression and its consequences. Cell 135
(2):216–226 - Singh A (2014) Transient changes in intercellular protein variability identify sources of noise
in gene expression. Biophys J 107(9):2214–2220 - Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23
(1):110–119 - Poulsen CR, Culbertson CT, Jacobson SC, Ramsey JM (2005) Static and dynamic acute
cytotoxicity assays on microfluidic devices. Anal Chem 77(2):667–672 - Balagadde ́FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of
bacteria undergoing programmed population control in a microchemostat. Science 309
(5731):137–140 - He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsu-
lation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets.
Anal Chem 77(6):1539–1544 - Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and
microparticles using optical images. Nature 436(7049):370–372 - Taff BM, Voldman J (2005) A scalable addressable positive-dielectrophoretic cell-sorting
array. Anal Chem 77(24):7976–7983 - Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and
inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78
(14):4925–4930 - Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger
ID, Daridon A (2003) Microfluidic device for single-cell analysis. Anal Chem 75
(14):3581–3586 - Peng XY (2011) A micro surface tension pump (MISPU) in a glass microchip. Lab Chip 11
(1):132–138 - Roman GT, Chen Y, Viberg P, Culbertson AH, Culbertson CT (2006) Single-cell manipulation
and analysis using microfluidic devices. Anal Bioanal Chem 387(1):9–12 - Riordon J, Nash M, Jing W, Godin M (2014) Quantifying the volume of single cells contin-
uously using a microfluidic pressure-driven trap with media exchange. Biomicrofluidics 8
(1):011101
8 Biological Applications of Microfluidics System 219