Treatment of Inflammatory Bowel Disease with Biologics

(C. Jardin) #1

10



  1. Brandse JF, van den Brink GR, Wildenberg ME, et al. Loss of infliximab into feces is associated
    with lack of response to therapy in patients with severe ulcerative colitis. Gastroenterology.
    2015;149:350–5.e2.

  2. Moore C, Corbett G, Moss AC. Systematic review and meta-analysis: serum infliximab levels
    during maintenance therapy and outcomes in inflammatory bowel disease. J Crohns Colitis.
    2016;10:619–25.

  3. Agace WW.  Tissue-tropic effector T cells: generation and targeting opportunities. Nat Rev
    Immunol. 2006;6:682–92.

  4. Salmi M, Jalkanen S.  Cell-surface enzymes in control of leukocyte trafficking. Nat Rev
    Immunol. 2005;5:760–71.

  5. Andrew DP, Rott LS, Kilshaw PJ, et  al. Distribution of alpha 4 beta 7 and alpha E beta 7
    integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes. Eur
    J Immunol. 1996;26:897–905.

  6. Soler D, Chapman T, Yang LL, et  al. The binding specificity and selective antagonism of
    vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflamma-
    tory bowel diseases. J Pharmacol Exp Ther. 2009;330:864–75.

  7. Parikh A, Leach T, Wyant T, et al. Vedolizumab for the treatment of active ulcerative colitis: a
    randomized controlled phase 2 dose-ranging study. Inflamm Bowel Dis. 2012;18:1470–9.

  8. Rosario M, Dirks NL, Gastonguay MR, et al. Population pharmacokinetics- pharmacodynamics
    of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment Pharmacol
    Ther. 2015;42:188–202.

  9. Zhang HL, Zheng YJ, Pan YD, et al. Regulatory T-cell depletion in the gut caused by integ-
    rin beta7 deficiency exacerbates DSS colitis by evoking aberrant innate immunity. Mucosal
    Immunol. 2016;9:391–400.

  10. Fischer A, Zundler S, Atreya R, et al. Differential effects of alpha4beta7 and GPR15 on hom-
    ing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo. Gut.
    2016;65:1642–64.

  11. Lightner AL, Raffals LE, Mathis KL et  al. Postoperative outcomes in vedolizumab-treated
    patients undergoing abdominal operations for inflammatory bowel disease. J Crohns Colitis.
    2017;11(2):185–90.

  12. Sandborn WJ, Feagan BG, Rutgeerts P, et al. Vedolizumab as induction and maintenance ther-
    apy for Crohn’s disease. N Engl J Med. 2013;369:711–21.

  13. Rosario M, Wyant T, Leach T, et  al. Vedolizumab pharmacokinetics, pharmacodynamics,
    safety, and tolerability following administration of a single, ascending, intravenous dose to
    healthy volunteers. Clin Drug Investig. 2016;36:913–23.

  14. Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimu-
    latory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp
    Med. 1989;170:827–45.

  15. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population
    that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.

  16. Nielsen OH, Kirman I, Rudiger N, et  al. Upregulation of interleukin-12 and -17  in active
    inflammatory bowel disease. Scand J Gastroenterol. 2003;38:180–5.

  17. Kobayashi T, Okamoto S, Hisamatsu T, et al. IL23 differentially regulates the Th1/Th17 bal-
    ance in ulcerative colitis and Crohn’s disease. Gut. 2008;57:1682–9.

  18. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation
    by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

  19. Benson JM, Peritt D, Scallon BJ, et al. Discovery and mechanism of ustekinumab: a human
    monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-
    mediated disorders. MAbs. 2011;3:535–45.

  20. Lupardus PJ, Garcia KC.  The structure of interleukin-23 reveals the molecular basis of p40
    subunit sharing with interleukin-12. J Mol Biol. 2008;382:931–41.


A.C. Moss
Free download pdf