to human T helper cell differentiation process.
Bioinformatics 23(16):2096–2103
- Jiang X, Zhang H, Quan X (2016) Differen-
tially Coexpressed disease gene identification
based on gene Coexpression network. Biomed
Res Int 2016:3962761
- Yang J et al (2013) DCGL v2.0: an R package
for unveiling differential regulation from differ-
ential co-expression. PLoS One 8(11):e79729
- Watson M (2006) CoXpress: differential
co-expression in gene expression data. BMC
Bioinformatics 7:509
- Tesson BM, Breitling R, Jansen RC (2010)
DiffCoEx: a simple and sensitive method to
find differentially coexpressed gene modules.
BMC Bioinformatics 11:497
- Choi Y, Kendziorski C (2009) Statistical meth-
ods for gene set co-expression analysis. Bioin-
formatics 25(21):2780–2786
- Rahmatallah Y, Emmert-Streib F, Glazko G
(2014) Gene sets net correlations analysis
(GSNCA): a multivariate differential coexpres-
sion test for gene sets. Bioinformatics 30
(3):360–368
- Amar D, Safer H, Shamir R (2013) Dissection
of regulatory networks that are altered in dis-
ease via differential co-expression. PLoS Com-
put Biol 9(3):e1002955
- Lai Y et al (2004) A statistical method for iden-
tifying differential gene-gene co-expression
patterns. Bioinformatics 20(17):3146–3155
- Choi JK et al (2005) Differential coexpression
analysis using microarray data and its applica-
tion to human cancer. Bioinformatics 21
(24):4348–4355
- Yoon SH, Kim JS, Song HH (2003) Statistical
inference methods for detecting altered gene
associations. Genome Inform 14:54–63
- Li KC (2002) Genome-wide coexpression
dynamics: theory and application. Proc Natl
Acad Sci USA 99(26):16875–16880
- McKenzie AT et al (2016) DGCA: a compre-
hensive R package for differential gene correla-
tion analysis. BMC Syst Biol 10(1):106
- Fukushima A (2013) DiffCorr: an R package to
analyze and visualize differential correlations in
biological networks. Gene 518(1):209–214
28. Dawson JA, Ye S, Kendziorski C (2012)
R/EBcoexpress: an empirical Bayesian frame-
work for discovering differential co-expression.
Bioinformatics 28(14):1939–1940
29. Siska C, Bowler R, Kechris K (2016) The
discordant method: a novel approach for dif-
ferential correlation. Bioinformatics 32
(5):690–696
30. Deng SP, Zhu L, Huang DS (2015) Mining
the bladder cancer-associated genes by an
integrated strategy for the construction and
analysis of differential co-expression networks.
BMC Genomics 16(Suppl 3):S4
31. Jia X et al (2014) Cancer-risk module identifi-
cation and module-based disease risk evalua-
tion: a case study on lung cancer. PLoS One 9
(3):e92395
32. Hong S et al (2011) Gene co-expression net-
work and functional module analysis of ovarian
cancer. Int J Comput Biol Drug Des 4
(2):147–164
33. Ivliev AE et al (2016) Drug repositioning
through systematic Mining of Gene Coexpres-
sion Networks in cancer. PLoS One 11(11):
e0165059
34. Giulietti M et al (2016) Weighted gene
co-expression network analysis reveals key
genes involved in pancreatic ductal adenocarci-
noma development. Cell Oncol (Dordr) 39
(4):379–388
35. Gu Y et al (2017) Identification of prognostic
genes in kidney renal clear cell carcinoma by
RNAseq data analysis. Mol Med Rep 15
(4):1661–1667
36. Oros Klein K et al (2016) Gene Coexpression
analyses differentiate networks associated with
diverse cancers Harboring TP53 missense or
null mutations. Front Genet 7:137
37. Li C et al (2013) Gene expression patterns
combined with bioinformatics analysis identify
genes associated with cholangiocarcinoma.
Comput Biol Chem 47:192–197
38. Cao MS et al (2015) Differential network anal-
ysis reveals dysfunctional regulatory networks
in gastric carcinogenesis. Am J Cancer Res 5
(9):2605–2625
Differential Coexpression Network Analysis for Gene Expression Data 165