Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1

  1. Edgren H, Murumagi A, Kangaspeska S,
    Nicorici D, Hongisto V, Kleivi K, Rye IH,
    Nyberg S, Wolf M, Borresen-Dale AL, Kallio-
    niemi O (2011) Identification of fusion genes
    in breast cancer by paired-end RNA-sequen-
    cing. Genome Biol 12(1):R6. https://doi.
    org/10.1186/gb-2011-12-1-r6

  2. Treutlein B, Brownfield DG, Wu AR, Neff NF,
    Mantalas GL, Espinoza FH, Desai TJ, Krasnow
    MA, Quake SR (2014) Reconstructing lineage
    hierarchies of the distal lung epithelium using
    single-cell RNA-seq. Nature 509
    (7500):371–375. https://doi.org/10.1038/
    nature13173

  3. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ
    (2008) Deep surveying of alternative splicing
    complexity in the human transcriptome by
    high-throughput sequencing. Nat Genet 40
    (12):1413–1415. https://doi.org/10.1038/
    ng.259

  4. Yang L, Duff MO, Graveley BR, Carmichael
    GG, Chen LL (2011) Genomewide characteri-
    zation of non-polyadenylated RNAs. Genome
    Biol 12(2):R16. https://doi.org/10.1186/
    gb-2011-12-2-r16

  5. Nagalakshmi U, Wang Z, Waern K, Shou C,
    Raha D, Gerstein M, Snyder M (2008) The
    transcriptional landscape of the yeast genome
    defined by RNA sequencing. Science 320
    (5881):1344–1349. https://doi.org/10.
    1126/science.1158441

  6. Cloonan N, Forrest AR, Kolle G, Gardiner BB,
    Faulkner GJ, Brown MK, Taylor DF, Steptoe
    AL, Wani S, Bethel G, Robertson AJ, Perkins
    AC, Bruce SJ, Lee CC, Ranade SS, Peckham
    HE, Manning JM, McKernan KJ, Grimmond
    SM (2008) Stem cell transcriptome profiling
    via massive-scale mRNA sequencing. Nat
    Methods 5(7):613–619.https://doi.org/10.
    1038/nmeth.1223

  7. Trapnell C, Pachter L, Salzberg SL (2009)
    TopHat: discovering splice junctions with
    RNA-Seq. Bioinformatics 25(9):1105–1111.
    https://doi.org/10.1093/bioinformatics/
    btp120

  8. Li R, Li Y, Kristiansen K, Wang J (2008)
    SOAP: short oligonucleotide alignment pro-
    gram. Bioinformatics 24(5):713–714.
    https://doi.org/10.1093/bioinformatics/
    btn025

  9. Wu TD, Nacu S (2010) Fast and SNP-tolerant
    detection of complex variants and splicing in
    short reads. Bioinformatics 26(7):873–881.
    https://doi.org/10.1093/bioinformatics/
    btq057

  10. Patro R, Mount SM, Kingsford C (2014) Sail-
    fish enables alignment-free isoform quantifica-
    tion from RNA-seq reads using lightweight


algorithms. Nat Biotechnol 32(5):462–464.
https://doi.org/10.1038/nbt.2862


  1. Bray NL, Pimentel H, Melsted P, Pachter L
    (2016) Near-optimal probabilistic RNA-seq
    quantification. Nat Biotechnol 34
    (5):525–527. https://doi.org/10.1038/nbt.
    3519

  2. Zyprych-Walczak J, Szabelska A,
    Handschuh L, Gorczak K, Klamecka K,
    Figlerowicz M, Siatkowski I (2015) The impact
    of normalization methods on RNA-Seq data
    analysis. Biomed Res Int 2015:621690.
    https://doi.org/10.1155/2015/621690

  3. Ringner M (2008) What is principal compo-
    nent analysis? Nat Biotechnol 26(3):303–304

  4. van der Maaten L (2014) Accelerating t-SNE
    using Tree-Based Algorithms. J Mach Learn
    Res 15:3221–3245

  5. Goecks J, Nekrutenko A, Taylor J, Galaxy T
    (2010) Galaxy: a comprehensive approach for
    supporting accessible, reproducible, and trans-
    parent computational research in the life
    sciences. Genome Biol 11(8):R86. https://
    doi.org/10.1186/gb-2010-11-8-r86

  6. Nelson JW, Sklenar J, Barnes AP, Minnier J
    (2017) The START App: a web-based RNAseq
    analysis and visualization resource. Bioinfor-
    matics 33(3):447–449. https://doi.org/10.
    1093/bioinformatics/btw624

  7. D’Antonio M, D’Onorio De Meo P,
    Pallocca M, Picardi E, D’Erchia AM, Calogero
    RA, Castrignano T, Pesole G (2015) RAP:
    RNA-Seq Analysis Pipeline, a new cloud-
    based NGS web application. BMC Genomics
    16:S3.https://doi.org/10.1186/1471-2164-
    16-S6-S3

  8. Velmeshev D, Lally P, Magistri M, Faghihi MA
    (2016) CANEapp: a user-friendly application
    for automated next generation transcriptomic
    data analysis. BMC Genomics 17:49.https://
    doi.org/10.1186/s12864-015-2346-y

  9. Anders S, Huber W (2010) Differential expres-
    sion analysis for sequence count data. Genome
    Biol 11(10):R106.https://doi.org/10.1186/
    gb-2010-11-10-r106

  10. Dennis G Jr, Sherman BT, Hosack DA, Yang J,
    Gao W, Lane HC, Lempicki RA (2003)
    DAVID: Database for Annotation, Visualiza-
    tion, and Integrated Discovery. Genome Biol
    4(5):P3

  11. Huang DW, Sherman BT, Lempicki RA (2009)
    Systematic and integrative analysis of large gene
    lists using DAVID bioinformatics resources.
    Nat Protoc 4(1):44–57.https://doi.org/10.
    1038/nprot.2008.211

  12. Young MD, Wakefield MJ, Smyth GK, Oshlack
    A (2010) Gene ontology analysis for RNA-seq:


180 Chao Zhang et al.

Free download pdf