Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1
2015 and beyond. Lancet Psychiatry 3
(1):13–15. https://doi.org/10.1016/
S2215-0366(15)00549-0


  1. Zeng T, Zhang W, Yu X, Liu X, Li M, Chen L
    (2016) Big-data-based edge biomarkers:
    study on dynamical drug sensitivity and resis-
    tance in individuals. Brief Bioinform 17
    (4):576–592. https://doi.org/10.1093/
    bib/bbv078

  2. Libbrecht MW, Noble WS (2015) Machine
    learning applications in genetics and geno-
    mics. Nat Rev Genet 16(6):321–332.
    https://doi.org/10.1038/nrg3920

  3. Ma C, Zhang HH, Wang X (2014) Machine
    learning for Big Data analytics in plants.
    Trends Plant Sci 19(12):798–808.https://
    doi.org/10.1016/j.tplants.2014.08.004

  4. Li Y, Wu FX, Ngom A (2016) A review on
    machine learning principles for multi-view
    biological data integration. Brief Bioinform.
    https://doi.org/10.1093/bib/bbw113

  5. Fabris F, Magalhaes JP, Freitas AA (2017) A
    review of supervised machine learning applied
    to ageing research. Biogerontology 18
    (2):171–188. https://doi.org/10.1007/
    s10522-017-9683-y

  6. Walsh I, Pollastri G, Tosatto SC (2016) Cor-
    rect machine learning on protein sequences: a
    peer-reviewing perspective. Brief Bioinform
    17(5):831–840. https://doi.org/10.1093/
    bib/bbv082

  7. Fu LM (2014) Machine learning and tuber-
    cular drug target recognition. Curr Pharm
    Des 20(27):4307–4318

  8. Singh A, Ganapathysubramanian B, Singh
    AK, Sarkar S (2016) Machine learning for
    high-throughput stress phenotyping in plants.
    Trends Plant Sci 21(2):110–124.https://doi.
    org/10.1016/j.tplants.2015.10.015

  9. Habibi N, Mohd Hashim SZ, Norouzi A,
    Samian MR (2014) A review of machine
    learning methods to predict the solubility of
    overexpressed recombinant proteins in
    Escherichia coli. BMC Bioinformatics
    15:134. https://doi.org/10.1186/1471-
    2105-15-134

  10. Walia RR, Caragea C, Lewis BA, Towfic F,
    Terribilini M, El-Manzalawy Y, Dobbs D,
    Honavar V (2012) Protein-RNA interface
    residue prediction using machine learning:
    an assessment of the state of the art. BMC
    Bioinformatics 13:89. https://doi.org/10.
    1186/1471-2105-13-89

  11. Quinlan JR (1996) Improved use of continu-
    ous attributes in C4.5. J Artif Int Res 4
    (1):77–90
    24. Brin S, Page L (1998) The anatomy of a large-
    scale hypertextual Web search engine. Com-
    put Netw ISDN Syst 30(1):107–117.
    https://doi.org/10.1016/S0169-7552(98)
    00110-X
    25. Curtin RR, Cline JR, Slagle NP, March WB,
    Ram P, Mehta NA, Gray AG (2013)
    MLPACK: a scalable C++ machine learning
    library. J Mach Learn Res 14(1):801–805
    26. Agrawal R, Srikant R (1994) Fast algorithms
    for mining association rules in large databases.
    In: Proceedings of the 20th International
    Conference on Very Large Data Bases, 1994.
    Morgan Kaufmann Publishers Inc., pp
    487–499. doi:citeulike-article-id:217131
    27. Dempster A, NM L, DB R (1977) Maximum
    likelihood from incomplete data via the EM
    algorithm. J R Stat Soc Series B Methodol 39
    (1):1–38
    28. Xie X, Wu S, Lam KM, Yan H (2006) Promo-
    terExplorer: an effective promoter identifica-
    tion method based on the AdaBoost
    algorithm. Bioinformatics 22
    (22):2722–2728.https://doi.org/10.1093/
    bioinformatics/btl482
    29. Altman NS (1992) An introduction to Kernel
    and nearest-neighbor nonparametric regres-
    sion. Am Stat 46(3):175–185
    30. Rennie JDM (2003) Tackling the poor
    assumptions of naive Bayes text classifiers. In:
    Proceedings of the twentieth International
    Conference on Machine Learning (ICML-
    2003), Washington, DC, pp 616–623
    31. Ma C, Xin M, Feldmann KA, Wang X (2014)
    Machine learning-based differential network
    analysis: a study of stress-responsive transcrip-
    tomes in Arabidopsis. Plant Cell 26
    (2):520–537.https://doi.org/10.1105/tpc.
    113.121913
    32. Zhang W, Feng D, Li R, Chernikov A,
    Chrisochoides N, Osgood C, Konikoff C,
    Newfeld S, Kumar S, Ji S (2013) A mesh
    generation and machine learning framework
    for Drosophila gene expression pattern image
    analysis. BMC Bioinformatics 14:372.
    https://doi.org/10.1186/1471-2105-14-
    372
    33. De Ferrari L, Mitchell JB (2014) From
    sequence to enzyme mechanism using multi-
    label machine learning. BMC Bioinformatics
    15:150. https://doi.org/10.1186/1471-
    2105-15-150
    34. Savojardo C, Fariselli P, Casadio R (2013)
    BETAWARE: a machine-learning tool to
    detect and predict transmembrane beta-barrel
    proteins in prokaryotes. Bioinformatics 29


Revisit of Machine Learning Supported Biological and Biomedical Studies 199
Free download pdf