2015 and beyond. Lancet Psychiatry 3
(1):13–15. https://doi.org/10.1016/
S2215-0366(15)00549-0
- Zeng T, Zhang W, Yu X, Liu X, Li M, Chen L
(2016) Big-data-based edge biomarkers:
study on dynamical drug sensitivity and resis-
tance in individuals. Brief Bioinform 17
(4):576–592. https://doi.org/10.1093/
bib/bbv078
- Libbrecht MW, Noble WS (2015) Machine
learning applications in genetics and geno-
mics. Nat Rev Genet 16(6):321–332.
https://doi.org/10.1038/nrg3920
- Ma C, Zhang HH, Wang X (2014) Machine
learning for Big Data analytics in plants.
Trends Plant Sci 19(12):798–808.https://
doi.org/10.1016/j.tplants.2014.08.004
- Li Y, Wu FX, Ngom A (2016) A review on
machine learning principles for multi-view
biological data integration. Brief Bioinform.
https://doi.org/10.1093/bib/bbw113
- Fabris F, Magalhaes JP, Freitas AA (2017) A
review of supervised machine learning applied
to ageing research. Biogerontology 18
(2):171–188. https://doi.org/10.1007/
s10522-017-9683-y
- Walsh I, Pollastri G, Tosatto SC (2016) Cor-
rect machine learning on protein sequences: a
peer-reviewing perspective. Brief Bioinform
17(5):831–840. https://doi.org/10.1093/
bib/bbv082
- Fu LM (2014) Machine learning and tuber-
cular drug target recognition. Curr Pharm
Des 20(27):4307–4318
- Singh A, Ganapathysubramanian B, Singh
AK, Sarkar S (2016) Machine learning for
high-throughput stress phenotyping in plants.
Trends Plant Sci 21(2):110–124.https://doi.
org/10.1016/j.tplants.2015.10.015
- Habibi N, Mohd Hashim SZ, Norouzi A,
Samian MR (2014) A review of machine
learning methods to predict the solubility of
overexpressed recombinant proteins in
Escherichia coli. BMC Bioinformatics
15:134. https://doi.org/10.1186/1471-
2105-15-134
- Walia RR, Caragea C, Lewis BA, Towfic F,
Terribilini M, El-Manzalawy Y, Dobbs D,
Honavar V (2012) Protein-RNA interface
residue prediction using machine learning:
an assessment of the state of the art. BMC
Bioinformatics 13:89. https://doi.org/10.
1186/1471-2105-13-89
- Quinlan JR (1996) Improved use of continu-
ous attributes in C4.5. J Artif Int Res 4
(1):77–90
24. Brin S, Page L (1998) The anatomy of a large-
scale hypertextual Web search engine. Com-
put Netw ISDN Syst 30(1):107–117.
https://doi.org/10.1016/S0169-7552(98)
00110-X
25. Curtin RR, Cline JR, Slagle NP, March WB,
Ram P, Mehta NA, Gray AG (2013)
MLPACK: a scalable C++ machine learning
library. J Mach Learn Res 14(1):801–805
26. Agrawal R, Srikant R (1994) Fast algorithms
for mining association rules in large databases.
In: Proceedings of the 20th International
Conference on Very Large Data Bases, 1994.
Morgan Kaufmann Publishers Inc., pp
487–499. doi:citeulike-article-id:217131
27. Dempster A, NM L, DB R (1977) Maximum
likelihood from incomplete data via the EM
algorithm. J R Stat Soc Series B Methodol 39
(1):1–38
28. Xie X, Wu S, Lam KM, Yan H (2006) Promo-
terExplorer: an effective promoter identifica-
tion method based on the AdaBoost
algorithm. Bioinformatics 22
(22):2722–2728.https://doi.org/10.1093/
bioinformatics/btl482
29. Altman NS (1992) An introduction to Kernel
and nearest-neighbor nonparametric regres-
sion. Am Stat 46(3):175–185
30. Rennie JDM (2003) Tackling the poor
assumptions of naive Bayes text classifiers. In:
Proceedings of the twentieth International
Conference on Machine Learning (ICML-
2003), Washington, DC, pp 616–623
31. Ma C, Xin M, Feldmann KA, Wang X (2014)
Machine learning-based differential network
analysis: a study of stress-responsive transcrip-
tomes in Arabidopsis. Plant Cell 26
(2):520–537.https://doi.org/10.1105/tpc.
113.121913
32. Zhang W, Feng D, Li R, Chernikov A,
Chrisochoides N, Osgood C, Konikoff C,
Newfeld S, Kumar S, Ji S (2013) A mesh
generation and machine learning framework
for Drosophila gene expression pattern image
analysis. BMC Bioinformatics 14:372.
https://doi.org/10.1186/1471-2105-14-
372
33. De Ferrari L, Mitchell JB (2014) From
sequence to enzyme mechanism using multi-
label machine learning. BMC Bioinformatics
15:150. https://doi.org/10.1186/1471-
2105-15-150
34. Savojardo C, Fariselli P, Casadio R (2013)
BETAWARE: a machine-learning tool to
detect and predict transmembrane beta-barrel
proteins in prokaryotes. Bioinformatics 29
Revisit of Machine Learning Supported Biological and Biomedical Studies 199