Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1
(4):504–505.https://doi.org/10.1093/bio
informatics/bts728


  1. Hocking TD, Goerner-Potvin P, Morin A,
    Shao X, Pastinen T, Bourque G (2017) Opti-
    mizing ChIP-seq peak detectors using visual
    labels and supervised machine learning. Bio-
    informatics 33(4):491–499.https://doi.org/
    10.1093/bioinformatics/btw672

  2. Hepler NL, Scheffler K, Weaver S, Murrell B,
    Richman DD, Burton DR, Poignard P, Smith
    DM, Kosakovsky Pond SL (2014) IDEPI:
    rapid prediction of HIV-1 antibody epitopes
    and other phenotypic features from sequence
    data using a flexible machine learning plat-
    form. PLoS Comput Biol 10(9):e1003842.
    https://doi.org/10.1371/journal.pcbi.
    1003842

  3. Somarowthu S, Ondrechen MJ (2012)
    POOL server: machine learning application
    for functional site prediction in proteins. Bio-
    informatics 28(15):2078–2079.https://doi.
    org/10.1093/bioinformatics/bts321

  4. Ryvkin P, Leung YY, Ungar LH, Gregory BD,
    Wang LS (2014) Using machine learning and
    high-throughput RNA sequencing to classify
    the precursors of small non-coding RNAs.
    Methods 67(1):28–35.https://doi.org/10.
    1016/j.ymeth.2013.10.002

  5. Spinella JF, Mehanna P, Vidal R, Saillour V,
    Cassart P, Richer C, Ouimet M, Healy J, Sin-
    nett D (2016) SNooPer: a machine learning-
    based method for somatic variant identifica-
    tion from low-pass next-generation sequenc-
    ing. BMC Genomics 17(1):912.https://doi.
    org/10.1186/s12864-016-3281-2

  6. Heinonen M, Shen H, Zamboni N, Rousu J
    (2012) Metabolite identification and molecu-
    lar fingerprint prediction through machine
    learning. Bioinformatics 28(18):2333–2341.
    https://doi.org/10.1093/bioinformatics/
    bts437

  7. Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R,
    Zhang X, Shimizu K, Tang YJ, Bao FS (2016)
    Rapid prediction of bacterial heterotrophic
    fluxomics using machine learning and con-
    straint programming. PLoS Comput Biol 12
    (4):e1004838. https://doi.org/10.1371/
    journal.pcbi.1004838

  8. Yu T, Jones DP (2014) Improving peak detec-
    tion in high-resolution LC/MS metabolo-
    mics data using preexisting knowledge and
    machine learning approach. Bioinformatics
    30(20):2941–2948. https://doi.org/10.
    1093/bioinformatics/btu430

  9. Vervier K, Mahe P, Tournoud M, Veyrieras
    JB, Vert JP (2016) Large-scale machine
    learning for metagenomics sequence classifi-
    cation. Bioinformatics 32(7):1023–1032.


https://doi.org/10.1093/bioinformatics/
btv683


  1. Pasolli E, Truong DT, Malik F, Waldron L,
    Segata N (2016) Machine learning meta-
    analysis of large metagenomic datasets: tools
    and biological insights. PLoS Comput Biol 12
    (7):e1004977. https://doi.org/10.1371/
    journal.pcbi.1004977

  2. Pybus M, Luisi P, Dall’Olio GM,
    Uzkudun M, Laayouni H, Bertranpetit J,
    Engelken J (2015) Hierarchical boosting: a
    machine-learning framework to detect and
    classify hard selective sweeps in human popu-
    lations. Bioinformatics 31(24):3946–3952.
    https://doi.org/10.1093/bioinformatics/
    btv493

  3. Magnan CN, Baldi P (2014) SSpro/ACCpro
    5: almost perfect prediction of protein sec-
    ondary structure and relative solvent accessi-
    bility using profiles, machine learning and
    structural similarity. Bioinformatics 30
    (18):2592–2597.https://doi.org/10.1093/
    bioinformatics/btu352

  4. Cao R, Adhikari B, Bhattacharya D, Sun M,
    Hou J, Cheng J (2017) QAcon: single model
    quality assessment using protein structural
    and contact information with machine
    learning techniques. Bioinformatics 33
    (4):586–588. https://doi.org/10.1093/bio
    informatics/btw694

  5. Gangal R, Sharma P (2005) Human pol II
    promoter prediction: time series descriptors
    and machine learning. Nucleic Acids Res 33
    (4):1332–1336. https://doi.org/10.1093/
    nar/gki271

  6. Mort M, Sterne-Weiler T, Li B, Ball EV, Coo-
    per DN, Radivojac P, Sanford JR, Mooney SD
    (2014) MutPred Splice: machine learning-
    based prediction of exonic variants that dis-
    rupt splicing. Genome Biol 15(1):R19.
    https://doi.org/10.1186/gb-2014-15-1-
    r19

  7. Busser BW, Taher L, Kim Y, Tansey T, Bloom
    MJ, Ovcharenko I, Michelson AM (2012) A
    machine learning approach for identifying
    novel cell type-specific transcriptional regula-
    tors of myogenesis. PLoS Genet 8(3):
    e1002531. https://doi.org/10.1371/jour
    nal.pgen.1002531

  8. Sutphin GL, Mahoney JM, Sheppard K, Wal-
    ton DO, Korstanje R (2016) WORMHOLE:
    novel least diverged ortholog prediction
    through machine learning. PLoS Comput
    Biol 12(11):e1005182.https://doi.org/10.
    1371/journal.pcbi.1005182

  9. Li F, Li C, Wang M, Webb GI, Zhang Y,
    Whisstock JC, Song J (2015) GlycoMine: a
    machine learning-based approach for


200 Xiang-tian Yu et al.

Free download pdf