predicting N-, C- and O-linked glycosylation
in the human proteome. Bioinformatics 31
(9):1411–1419. https://doi.org/10.1093/
bioinformatics/btu852
- Kauffman C, Karypis G (2009) LIBRUS:
combined machine learning and homology
information for sequence-based ligand-bind-
ing residue prediction. Bioinformatics 25
(23):3099–3107.https://doi.org/10.1093/
bioinformatics/btp561
- Savojardo C, Fariselli P, Alhamdoosh M, Mar-
telli PL, Pierleoni A, Casadio R (2011)
Improving the prediction of disulfide bonds
in Eukaryotes with machine learning methods
and protein subcellular localization. Bioinfor-
matics 27(16):2224–2230.https://doi.org/
10.1093/bioinformatics/btr387
- Aydin Z, Murray JI, Waterston RH, Noble
WS (2010) Using machine learning to speed
up manual image annotation: application to a
3D imaging protocol for measuring single cell
gene expression in the developing C. elegans
embryo. BMC Bioinformatics 11:84.https://
doi.org/10.1186/1471-2105-11-84
- Tsakanikas P, Manolakos ES (2011) Protein
spot detection and quantification in 2-DE gel
images using machine-learning methods. Pro-
teomics 11(10):2038–2050. https://doi.
org/10.1002/pmic.201000601
- Hong SH, Cortesio CL, Drubin DG (2015)
Machine-learning-based analysis in genome-
edited cells reveals the efficiency of clathrin-
mediated endocytosis. Cell Rep 12
(12):2121–2130.https://doi.org/10.1016/
j.celrep.2015.08.048
- Abu A, Leow LK, Ramli R, Omar H (2016)
Classification of Suncus murinus species com-
plex (Soricidae: Crocidurinae) in Peninsular
Malaysia using image analysis and machine
learning approaches. BMC Bioinformatics 17
(Suppl 19):505. https://doi.org/10.1186/
s12859-016-1362-5
- Hamp T, Rost B (2015) More challenges for
machine-learning protein interactions. Bioin-
formatics 31(10):1521–1525. https://doi.
org/10.1093/bioinformatics/btu857
- Ballester PJ, Mitchell JB (2010) A machine
learning approach to predicting protein-
ligand binding affinity with applications to
molecular docking. Bioinformatics 26
(9):1169–1175. https://doi.org/10.1093/
bioinformatics/btq112
- Reynes C, Host H, Camproux AC,
Laconde G, Leroux F, Mazars A, Deprez B,
Fahraeus R, Villoutreix BO, Sperandio O
(2010) Designing focused chemical libraries
enriched in protein-protein interaction
inhibitors using machine-learning methods.
PLoS Comput Biol 6(3):e1000695.https://
doi.org/10.1371/journal.pcbi.1000695
- Ding H, Takigawa I, Mamitsuka H, Zhu S
(2014) Similarity-based machine learning
methods for predicting drug-target interac-
tions: a brief review. Brief Bioinform 15
(5):734–747. https://doi.org/10.1093/
bib/bbt056
- Bauer T, Eils R, Konig R (2011) RIP: the
regulatory interaction predictor—a machine
learning-based approach for predicting target
genes of transcription factors. Bioinformatics
27(16):2239–2247. https://doi.org/10.
1093/bioinformatics/btr366
- Jha A, Shankar R (2011) Employing machine
learning for reliable miRNA target identifica-
tion in plants. BMC Genomics 12:636.
https://doi.org/10.1186/1471-2164-12-
636
- Yousef M, Jung S, Kossenkov AV, Showe LC,
Showe MK (2007) Naive Bayes for micro-
RNA target predictions—machine learning
for microRNA targets. Bioinformatics 23
(22):2987–2992.https://doi.org/10.1093/
bioinformatics/btm484
- Sturm M, Hackenberg M, Langenberger D,
Frishman D (2010) TargetSpy: a supervised
machine learning approach for microRNA tar-
get prediction. BMC Bioinformatics 11:292.
https://doi.org/10.1186/1471-2105-11-
292
- Kim SY, Diggans J, Pankratz D, Huang J,
Pagan M, Sindy N, Tom E, Anderson J,
Choi Y, Lynch DA, Steele MP, Flaherty KR,
Brown KK, Farah H, Bukstein MJ, Pardo A,
Selman M, Wolters PJ, Nathan SD, Colby TV,
Myers JL, Katzenstein AL, Raghu G, Kennedy
GC (2015) Classification of usual interstitial
pneumonia in patients with interstitial lung
disease: assessment of a machine learning
approach using high-dimensional transcrip-
tional data. Lancet Respir Med 3
(6):473–482. https://doi.org/10.1016/
S2213-2600(15)00140-X
- Richardson AM, Lidbury BA (2013) Infec-
tion status outcome, machine learning
method and virus type interact to affect the
optimised prediction of hepatitis virus immu-
noassay results from routine pathology labo-
ratory assays in unbalanced data. BMC
Bioinformatics 14:206.https://doi.org/10.
1186/1471-2105-14-206
- Liu Q, Sung AH, Chen Z, Liu J, Chen L,
Qiao M, Wang Z, Huang X, Deng Y (2011)
Gene selection and classification for cancer
microarray data based on machine learning
Revisit of Machine Learning Supported Biological and Biomedical Studies 201