Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1
predicting N-, C- and O-linked glycosylation
in the human proteome. Bioinformatics 31
(9):1411–1419. https://doi.org/10.1093/
bioinformatics/btu852


  1. Kauffman C, Karypis G (2009) LIBRUS:
    combined machine learning and homology
    information for sequence-based ligand-bind-
    ing residue prediction. Bioinformatics 25
    (23):3099–3107.https://doi.org/10.1093/
    bioinformatics/btp561

  2. Savojardo C, Fariselli P, Alhamdoosh M, Mar-
    telli PL, Pierleoni A, Casadio R (2011)
    Improving the prediction of disulfide bonds
    in Eukaryotes with machine learning methods
    and protein subcellular localization. Bioinfor-
    matics 27(16):2224–2230.https://doi.org/
    10.1093/bioinformatics/btr387

  3. Aydin Z, Murray JI, Waterston RH, Noble
    WS (2010) Using machine learning to speed
    up manual image annotation: application to a
    3D imaging protocol for measuring single cell
    gene expression in the developing C. elegans
    embryo. BMC Bioinformatics 11:84.https://
    doi.org/10.1186/1471-2105-11-84

  4. Tsakanikas P, Manolakos ES (2011) Protein
    spot detection and quantification in 2-DE gel
    images using machine-learning methods. Pro-
    teomics 11(10):2038–2050. https://doi.
    org/10.1002/pmic.201000601

  5. Hong SH, Cortesio CL, Drubin DG (2015)
    Machine-learning-based analysis in genome-
    edited cells reveals the efficiency of clathrin-
    mediated endocytosis. Cell Rep 12
    (12):2121–2130.https://doi.org/10.1016/
    j.celrep.2015.08.048

  6. Abu A, Leow LK, Ramli R, Omar H (2016)
    Classification of Suncus murinus species com-
    plex (Soricidae: Crocidurinae) in Peninsular
    Malaysia using image analysis and machine
    learning approaches. BMC Bioinformatics 17
    (Suppl 19):505. https://doi.org/10.1186/
    s12859-016-1362-5

  7. Hamp T, Rost B (2015) More challenges for
    machine-learning protein interactions. Bioin-
    formatics 31(10):1521–1525. https://doi.
    org/10.1093/bioinformatics/btu857

  8. Ballester PJ, Mitchell JB (2010) A machine
    learning approach to predicting protein-
    ligand binding affinity with applications to
    molecular docking. Bioinformatics 26
    (9):1169–1175. https://doi.org/10.1093/
    bioinformatics/btq112

  9. Reynes C, Host H, Camproux AC,
    Laconde G, Leroux F, Mazars A, Deprez B,
    Fahraeus R, Villoutreix BO, Sperandio O
    (2010) Designing focused chemical libraries
    enriched in protein-protein interaction


inhibitors using machine-learning methods.
PLoS Comput Biol 6(3):e1000695.https://
doi.org/10.1371/journal.pcbi.1000695


  1. Ding H, Takigawa I, Mamitsuka H, Zhu S
    (2014) Similarity-based machine learning
    methods for predicting drug-target interac-
    tions: a brief review. Brief Bioinform 15
    (5):734–747. https://doi.org/10.1093/
    bib/bbt056

  2. Bauer T, Eils R, Konig R (2011) RIP: the
    regulatory interaction predictor—a machine
    learning-based approach for predicting target
    genes of transcription factors. Bioinformatics
    27(16):2239–2247. https://doi.org/10.
    1093/bioinformatics/btr366

  3. Jha A, Shankar R (2011) Employing machine
    learning for reliable miRNA target identifica-
    tion in plants. BMC Genomics 12:636.
    https://doi.org/10.1186/1471-2164-12-
    636

  4. Yousef M, Jung S, Kossenkov AV, Showe LC,
    Showe MK (2007) Naive Bayes for micro-
    RNA target predictions—machine learning
    for microRNA targets. Bioinformatics 23
    (22):2987–2992.https://doi.org/10.1093/
    bioinformatics/btm484

  5. Sturm M, Hackenberg M, Langenberger D,
    Frishman D (2010) TargetSpy: a supervised
    machine learning approach for microRNA tar-
    get prediction. BMC Bioinformatics 11:292.
    https://doi.org/10.1186/1471-2105-11-
    292

  6. Kim SY, Diggans J, Pankratz D, Huang J,
    Pagan M, Sindy N, Tom E, Anderson J,
    Choi Y, Lynch DA, Steele MP, Flaherty KR,
    Brown KK, Farah H, Bukstein MJ, Pardo A,
    Selman M, Wolters PJ, Nathan SD, Colby TV,
    Myers JL, Katzenstein AL, Raghu G, Kennedy
    GC (2015) Classification of usual interstitial
    pneumonia in patients with interstitial lung
    disease: assessment of a machine learning
    approach using high-dimensional transcrip-
    tional data. Lancet Respir Med 3
    (6):473–482. https://doi.org/10.1016/
    S2213-2600(15)00140-X

  7. Richardson AM, Lidbury BA (2013) Infec-
    tion status outcome, machine learning
    method and virus type interact to affect the
    optimised prediction of hepatitis virus immu-
    noassay results from routine pathology labo-
    ratory assays in unbalanced data. BMC
    Bioinformatics 14:206.https://doi.org/10.
    1186/1471-2105-14-206

  8. Liu Q, Sung AH, Chen Z, Liu J, Chen L,
    Qiao M, Wang Z, Huang X, Deng Y (2011)
    Gene selection and classification for cancer
    microarray data based on machine learning


Revisit of Machine Learning Supported Biological and Biomedical Studies 201
Free download pdf