Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1
generally performed less effective than local models because of the
complex mechanisms of diverse chemical structures.
A lot of efforts have been made to uncover the mechanism of
hERG blockage and predict the potency of compounds to inhibit
hERG. For homology models, it can directly provide the informa-
tion of compounds interacting with hERG, but the sequence iden-
tity between templates and hERG is low. Ligand-based models are
not affected by the structure of hERG, but the quality of inhibition
data has an important influence on the performance. Therefore, it is
necessary to collect high-quality experimental data for the develop-
ment of the prediction models.

References



  1. CMR International 2010 Global R&D Per-
    formance Metrics Programme.http://cmr.
    thomsonreuters.com/services/programs/
    randd/

  2. Lasser KE, Allen PD, Woolhandler SJ, Him-
    melstein DU, Wolfe SM, Bor DH (2002)
    Timing of new black box warnings and with-
    drawals for prescription medications. JAMA
    287(17):2215–2220. https://doi.org/10.
    1001/jama.287.17.2215

  3. O’Brien SE, de Groot MJ (2005) Greater
    than the sum of its parts: combining models
    for useful ADMET prediction. J Med Chem
    48(4):1287

  4. Vanderwall DE, Yuen N, Al-Ansari M,
    Bailey J, Fram D, Green DV, Pickett S,
    Vitulli G, Luengo JI, Almenoff JS (2011)
    Molecular clinical safety intelligence: a system
    for bridging clinically focused safety knowl-
    edge to early-stage drug discovery - the GSK
    experience. Drug Discov Today 16
    (15–16):646–653. https://doi.org/10.
    1016/j.drudis.2011.05.001. S1359-6446
    (11)00143-7 [pii]

  5. Accelrys Toxicity Database 2011.4. Accelrys
    Software Inc., San Diego, CA

  6. TOXNET. http://toxnet.nlm.nih.gov/.
    Accessed 14 Oct 2011

  7. SDF Download Page, U.S. EPA.http://www.
    epa.gov/ncct/dsstox/sdf_isscan_external.
    html. Accessed 8 July 2012

  8. Istituto Superiore di Sanita`Website.http://
    http://www.iss.it/ampp/dati/cont.php?id¼233&
    lang¼1&tipo¼7. Accessed 8 July 2012

  9. Dobson CM (2004) Chemical space and biol-
    ogy. Nature 432(7019):824–828. https://
    doi.org/10.1038/nature03192.
    nature03192 [pii]

  10. Walum E (1998) Acute oral toxicity. Environ
    Health Perspect 106(Suppl 2):497–503

  11. Label Review Manual (2014) Chapter7: Pre-
    cautionary statements. U.S. EPA,
    Washington, DC. https://www.epa.gov/
    sites/production/files/2015-03/
    documents/chap-07-jul-2014.pdf. Accessed
    20 Apr 2017

  12. Li X, Chen L, Cheng F, Wu Z, Bian H, Xu C,
    Li W, Liu G, Shen X, Tang Y (2014) In silico
    prediction of chemical acute oral toxicity
    using multi-classification methods. J Chem
    Inform Model 54(4):1061–1069

  13. Parasuraman S (2011) Toxicological screen-
    ing. J Pharmacol Pharmacother 2(2):74–79.
    https://doi.org/10.4103/0976-500X.

  14. JPP-2-74 [pii]

  15. Nicolotti O, Benfenati E, Carotti A,
    Gadaleta D, Gissi A, Mangiatordi GF, Novel-
    lino E (2014) REACH and in silico methods:
    an attractive opportunity for medicinal che-
    mists. Drug Discov Today 19
    (11):1757–1768.https://doi.org/10.1016/
    j.drudis.2014.06.027. S1359-6446(14)
    00269-4 [pii]

  16. Benz RD (2007) Toxicological and clinical
    computational analysis and the US FDA/C-
    DER. Expert Opin Drug Metab Toxicol 3
    (1):109–124. https://doi.org/10.1517/
    17425255.3.1.109

  17. Creton S, Dewhurst IC, Earl LK, Gehen SC,
    Guest RL, Hotchkiss JA, Indans I, Woolhiser
    MR, Billington R (2010) Acute toxicity test-
    ing of chemicals-opportunities to avoid
    redundant testing and use alternative
    approaches. Crit Rev Toxicol 40(1):50–83.
    https://doi.org/10.3109/
    10408440903401511

  18. Aiken LS, West SG, Pitts SC (2003) Multiple
    linear regression. In: Handbook of psychol-
    ogy. Wiley, New York.https://doi.org/10.
    1002/0471264385.wei0219


Machine Learning-Based Modeling of Drug Toxicity 259
Free download pdf