Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1

  1. Slinker BK, Glantz SA (2008) Multiple linear
    regression. Accounting for multiple simulta-
    neous determinants of a continuous depen-
    dent variable. Circulation 117
    (13):1732–1737.https://doi.org/10.1161/
    circulationaha.106.654376

  2. Tranmer M, Elliot M (2008) Multiple linear
    regression. The Cathie Marsh Centre for Cen-
    sus and Survey Research (CCSR), Oxford,
    UK

  3. Helland I (2004) Partial least squares regres-
    sion. In: Encyclopedia of statistical sciences.
    Wiley, New York.https://doi.org/10.1002/
    0471667196.ess6004.pub2

  4. Geladi P, Kowalski BR (1986) Partial least
    squares regression: a tutorial. Anal Chim
    Acta 185:1–17. http://www.udel.edu/
    chem/analytical/cumes/text-partial%
    20least-squares%20regression.pdf

  5. Le T, Epa VC, Burden FR, Winkler DA
    (2012) Quantitative structure-property rela-
    tionship modeling of diverse materials proper-
    ties. Chem Rev 112(5):2889–2919.https://
    doi.org/10.1021/cr200066h

  6. Davis L (1991) Handbook of genetic algo-
    rithms. Van Nostrand Reinhold, New York

  7. Toropov AA, Rasulev BF, Leszczynski J
    (2007) QSAR modeling of acute toxicity for
    nitrobenzene derivatives towards rats: com-
    parative analysis by MLRA and optimal
    descriptors. QSAR Comb Sci 26
    (5):686–693. https://doi.org/10.1002/
    qsar.200610135

  8. Todeschini R, Consonni V (2008) Handbook
    of molecular descriptors, vol 11. Wiley,
    New York

  9. Kubinyi H, Folkers G, Martin YC (1998) 3D
    QSAR in drug design, Ligand-protein inter-
    actions and molecular similarity, vol
    2. Springer Science & Business Media, Dor-
    drecht, Netherlands

  10. Devillers J, Balaban AT (2000) Topological
    indices and related descriptors in QSAR and
    QSPAR. CRC Press, Boca Raton

  11. Hecht-Nielsen R (1989) Theory of the back-
    propagation neural network. In: International
    1989 Joint Conference on Neural Networks,
    0–0, vol 591, pp 593–605. doi:10.1109/
    ijcnn.1989.118638

  12. Patterson DW (ed) (1998) Artificial neural
    networks: theory and applications. Prentice
    Hall PTR, Upper Saddle River

  13. Cortes C, Vapnik V (1995) Support-vector
    networks. Mach Learn 20(3):273–297

  14. Wang L (2005) Support vector machines: the-
    ory and applications, vol 177. Springer Sci-
    ence & Business Media, New York
    32. Eldred DV, Jurs PC (1999) Prediction of
    acute mammalian toxicity of organophospho-
    rus pesticide compounds from molecular
    structure. SAR QSAR Environ Res 10
    (2–3):75–99. https://doi.org/10.1080/
    10629369908039170
    33. Lu J, Lu D, Zhang X, Bi Y, Cheng K,
    Zheng M, Luo X (2016) Estimation of elimi-
    nation half-lives of organic chemicals in
    humans using gradient boosting machine.
    Biochim Biophys Acta 1860(11 Pt
    B):2664–2671. https://doi.org/10.1016/j.
    bbagen.2016.05.019
    34. Peng J, Lu J, Shen Q, Zheng M, Luo X,
    Zhu W, Jiang H, Chen K (2014) In silico
    site of metabolism prediction for human
    UGT-catalyzed reactions. Bioinformatics 30
    (3):398–405. https://doi.org/10.1093/bio
    informatics/btt681
    35. Kieslich CA, Smadbeck J, Khoury GA, Flou-
    das CA (2016) conSSert: consensus SVM
    model for accurate prediction of ordered sec-
    ondary structure. J Chem Inf Model 56
    (3):455–461.https://doi.org/10.1021/acs.
    jcim.5b00566
    36. Wang Y, Zheng M, Xiao J, Lu Y, Wang F,
    Lu J, Luo X, Zhu W, Jiang H, Chen K
    (2010) Using support vector regression cou-
    pled with the genetic algorithm for predicting
    acute toxicity to the fathead minnow. SAR
    QSAR Environ Res 21(5–6):559–570.
    https://doi.org/10.1080/1062936x.2010.
    502300
    37. Papa E, Villa F, Gramatica P (2005) Statisti-
    cally validated QSARs, based on theoretical
    descriptors, for modeling aquatic toxicity of
    organic chemicals in Pimephales promelas
    (fathead minnow). J Chem Inf Model 45
    (5):1256–1266. https://doi.org/10.1021/
    ci050212l
    38. Gini G, Craciun MV, Ko ̈nig C, Benfenati E
    (2004) Combining unsupervised and super-
    vised artificial neural networks to predict
    aquatic toxicity. J Chem Inf Comput Sci 44
    (6):1897–1902. https://doi.org/10.1021/
    ci0401219
    39. Obrezanova O, Csanyi G, Gola JM, Segall
    MD (2007) Gaussian processes: a method
    for automatic QSAR modeling of ADME
    properties. J Chem Inf Model 47
    (5):1847–1857. https://doi.org/10.1021/
    ci7000633
    40. Gramacy RB, Apley DW (2015) Local Gauss-
    ian process approximation for large computer
    experiments. J Comput Graph Stat 24
    (2):561–578. https://doi.org/10.1080/
    10618600.2014.914442


260 Jing Lu et al.

Free download pdf