- Slinker BK, Glantz SA (2008) Multiple linear
regression. Accounting for multiple simulta-
neous determinants of a continuous depen-
dent variable. Circulation 117
(13):1732–1737.https://doi.org/10.1161/
circulationaha.106.654376 - Tranmer M, Elliot M (2008) Multiple linear
regression. The Cathie Marsh Centre for Cen-
sus and Survey Research (CCSR), Oxford,
UK - Helland I (2004) Partial least squares regres-
sion. In: Encyclopedia of statistical sciences.
Wiley, New York.https://doi.org/10.1002/
0471667196.ess6004.pub2 - Geladi P, Kowalski BR (1986) Partial least
squares regression: a tutorial. Anal Chim
Acta 185:1–17. http://www.udel.edu/
chem/analytical/cumes/text-partial%
20least-squares%20regression.pdf - Le T, Epa VC, Burden FR, Winkler DA
(2012) Quantitative structure-property rela-
tionship modeling of diverse materials proper-
ties. Chem Rev 112(5):2889–2919.https://
doi.org/10.1021/cr200066h - Davis L (1991) Handbook of genetic algo-
rithms. Van Nostrand Reinhold, New York - Toropov AA, Rasulev BF, Leszczynski J
(2007) QSAR modeling of acute toxicity for
nitrobenzene derivatives towards rats: com-
parative analysis by MLRA and optimal
descriptors. QSAR Comb Sci 26
(5):686–693. https://doi.org/10.1002/
qsar.200610135 - Todeschini R, Consonni V (2008) Handbook
of molecular descriptors, vol 11. Wiley,
New York - Kubinyi H, Folkers G, Martin YC (1998) 3D
QSAR in drug design, Ligand-protein inter-
actions and molecular similarity, vol
2. Springer Science & Business Media, Dor-
drecht, Netherlands - Devillers J, Balaban AT (2000) Topological
indices and related descriptors in QSAR and
QSPAR. CRC Press, Boca Raton - Hecht-Nielsen R (1989) Theory of the back-
propagation neural network. In: International
1989 Joint Conference on Neural Networks,
0–0, vol 591, pp 593–605. doi:10.1109/
ijcnn.1989.118638 - Patterson DW (ed) (1998) Artificial neural
networks: theory and applications. Prentice
Hall PTR, Upper Saddle River - Cortes C, Vapnik V (1995) Support-vector
networks. Mach Learn 20(3):273–297 - Wang L (2005) Support vector machines: the-
ory and applications, vol 177. Springer Sci-
ence & Business Media, New York
32. Eldred DV, Jurs PC (1999) Prediction of
acute mammalian toxicity of organophospho-
rus pesticide compounds from molecular
structure. SAR QSAR Environ Res 10
(2–3):75–99. https://doi.org/10.1080/
10629369908039170
33. Lu J, Lu D, Zhang X, Bi Y, Cheng K,
Zheng M, Luo X (2016) Estimation of elimi-
nation half-lives of organic chemicals in
humans using gradient boosting machine.
Biochim Biophys Acta 1860(11 Pt
B):2664–2671. https://doi.org/10.1016/j.
bbagen.2016.05.019
34. Peng J, Lu J, Shen Q, Zheng M, Luo X,
Zhu W, Jiang H, Chen K (2014) In silico
site of metabolism prediction for human
UGT-catalyzed reactions. Bioinformatics 30
(3):398–405. https://doi.org/10.1093/bio
informatics/btt681
35. Kieslich CA, Smadbeck J, Khoury GA, Flou-
das CA (2016) conSSert: consensus SVM
model for accurate prediction of ordered sec-
ondary structure. J Chem Inf Model 56
(3):455–461.https://doi.org/10.1021/acs.
jcim.5b00566
36. Wang Y, Zheng M, Xiao J, Lu Y, Wang F,
Lu J, Luo X, Zhu W, Jiang H, Chen K
(2010) Using support vector regression cou-
pled with the genetic algorithm for predicting
acute toxicity to the fathead minnow. SAR
QSAR Environ Res 21(5–6):559–570.
https://doi.org/10.1080/1062936x.2010.
502300
37. Papa E, Villa F, Gramatica P (2005) Statisti-
cally validated QSARs, based on theoretical
descriptors, for modeling aquatic toxicity of
organic chemicals in Pimephales promelas
(fathead minnow). J Chem Inf Model 45
(5):1256–1266. https://doi.org/10.1021/
ci050212l
38. Gini G, Craciun MV, Ko ̈nig C, Benfenati E
(2004) Combining unsupervised and super-
vised artificial neural networks to predict
aquatic toxicity. J Chem Inf Comput Sci 44
(6):1897–1902. https://doi.org/10.1021/
ci0401219
39. Obrezanova O, Csanyi G, Gola JM, Segall
MD (2007) Gaussian processes: a method
for automatic QSAR modeling of ADME
properties. J Chem Inf Model 47
(5):1847–1857. https://doi.org/10.1021/
ci7000633
40. Gramacy RB, Apley DW (2015) Local Gauss-
ian process approximation for large computer
experiments. J Comput Graph Stat 24
(2):561–578. https://doi.org/10.1080/
10618600.2014.914442
260 Jing Lu et al.