Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1

  1. Gonza ́lez-Arjona D, Lo ́pez-Pe ́rez G, Gustavo
    Gonza ́lez A (2002) Non-linear QSAR model-
    ing by using multilayer perceptron feedfor-
    ward neural networks trained by back-
    propagation. Talanta 56(1):79–90.https://
    doi.org/10.1016/S0039-9140(01)00537-9

  2. Friedman JH (2001) Greedy function approx-
    imation: a gradient boosting machine. Ann
    Stat 29(5):1189–1232

  3. Lei T, Li Y, Song Y, Li D, Sun H, Hou T
    (2016) ADMETevaluation in drug discovery:
    15. Accurate prediction of rat oral acute tox-
    icity using relevance vector machine and con-
    sensus modeling. J Cheminform 8:6.https://
    doi.org/10.1186/s13321-016-0117-7

  4. Tipping ME (2001) Sparse Bayesian learning
    and the relevance vector machine. J Mach
    Learn Res 1:211–244.https://doi.org/10.
    1162/15324430152748236

  5. Burden FR, Winkler DA (2015) Relevance
    vector machines: sparse classification methods
    for QSAR. J Chem Inf Model 55
    (8):1529–1534. https://doi.org/10.1021/
    acs.jcim.5b00261

  6. Larose DT (2005) k-Nearest neighbor algo-
    rithm. In: Discovering knowledge in data.
    Wiley, New York, pp 90–106.https://doi.
    org/10.1002/0471687545.ch5

  7. Johnson RA, Wichern DW (2002) Applied
    multivariate statistical analysis, vol 8. Prentice
    Hall, Upper Saddle River, NJ

  8. Johnson MA, Maggiora GM (eds) (1990)
    Concepts and applications of molecular simi-
    larity. Wiley, New York

  9. Breiman L (2001) Random forests. Machine
    Learning 45(1):5–32. citeulike-article-
    id:12416445. https://doi.org/10.1023/a%
    253a1010933404324

  10. Romesburg CH (1984) Cluster analysis for
    researchers. Lifetime Learning publications,
    Belmont, CA

  11. Contrera JF, Matthews EJ, Daniel Benz R
    (2003) Predicting the carcinogenic potential
    of pharmaceuticals in rodents using molecular
    structural similarity and E-state indices. Regul
    Toxicol Pharmacol 38(3):243–259.
    S0273230003000710 [pii]

  12. Netzeva TI, Worth A, Aldenberg T,
    Benigni R, Cronin MT, Gramatica P,
    Jaworska JS, Kahn S, Klopman G, Marchant
    CA, Myatt G, Nikolova-Jeliazkova N, Patle-
    wicz GY, Perkins R, Roberts D, Schultz T,
    Stanton DW, van de Sandt JJ, Tong W,
    Veith G, Yang C (2005) Current status of
    methods for defining the applicability domain
    of (quantitative) structure-activity relation-
    ships. The report and recommendations of


ECVAM Workshop 52. Altern Lab Anim 33
(2):155–173


  1. Jaworska J, Nikolova-Jeliazkova N, Aldenberg
    T (2005) QSAR applicabilty domain estima-
    tion by projection of the training set descrip-
    tor space: a review. Altern Lab Anim 33
    (5):445–459

  2. Tropsha A, Gramatica P, Gombar VK (2003)
    The importance of being earnest: validation is
    the absolute essential for successful applica-
    tion and interpretation of QSPR models.
    QSAR Comb Sci 22(1):69–77.https://doi.
    org/10.1002/qsar.200390007

  3. Lu J, Peng J, Wang J, Shen Q, Bi Y, Gong L,
    Zheng M, Luo X, Zhu W, Jiang H, Chen K
    (2014) Estimation of acute oral toxicity in rat
    using local lazy learning. J Cheminform 6:26.
    https://doi.org/10.1186/1758-2946-6-26

  4. Hosmer DW Jr, Lemeshow S, Sturdivant RX
    (2013) Applied logistic regression, vol 398.
    Wiley, New York

  5. Quinlan JR (2014) C4. 5: programs for
    machine learning. Elsevier, San Francisco

  6. Specht DF (1990) Probabilistic neural net-
    works and the polynomial Adaline as comple-
    mentary techniques for classification. IEEE
    Trans Neural Netw 1(1):111–121.https://
    doi.org/10.1109/72.80210

  7. Xue Y, Li H, Ung CY, Yap CW, Chen YZ
    (2006) Classification of a diverse set of Tetra-
    hymena pyriformis toxicity chemical com-
    pounds from molecular descriptors by
    statistical learning methods. Chem Res Toxi-
    col 19(8):1030–1039. https://doi.org/10.
    1021/tx0600550

  8. Watson P (2008) Naı ̈ve Bayes classification
    using 2D Pharmacophore feature triplet vec-
    tors. J Chem Inf Model 48(1):166–178.
    https://doi.org/10.1021/ci7003253

  9. Hsu C-W, Lin C-J (2002) A comparison of
    methods for multiclass support vector
    machines. Trans Neur Netw 13(2):415–425.
    https://doi.org/10.1109/72.991427

  10. Chang CC, Lin CJ. LIBSVM -- A library for
    support vector machines. http://www.csie.
    ntu.edu.tw/cjlin/libsvm. Accessed 14 Feb
    2013

  11. Fei B, Liu J (2006) Binary tree of SVM: a new
    fast multiclass training and classification algo-
    rithm. Trans Neur Netw 17(3):696–704.
    https://doi.org/10.1109/tnn.2006.872343

  12. Cheong S, Sang H, Lee SY (2004) Support
    vector machines with binary tree architecture
    for multi-class classification. Neural Inf Pro-
    cess 2:47–51


Machine Learning-Based Modeling of Drug Toxicity 261
Free download pdf