- Gonza ́lez-Arjona D, Lo ́pez-Pe ́rez G, Gustavo
Gonza ́lez A (2002) Non-linear QSAR model-
ing by using multilayer perceptron feedfor-
ward neural networks trained by back-
propagation. Talanta 56(1):79–90.https://
doi.org/10.1016/S0039-9140(01)00537-9
- Friedman JH (2001) Greedy function approx-
imation: a gradient boosting machine. Ann
Stat 29(5):1189–1232
- Lei T, Li Y, Song Y, Li D, Sun H, Hou T
(2016) ADMETevaluation in drug discovery:
15. Accurate prediction of rat oral acute tox-
icity using relevance vector machine and con-
sensus modeling. J Cheminform 8:6.https://
doi.org/10.1186/s13321-016-0117-7
- Tipping ME (2001) Sparse Bayesian learning
and the relevance vector machine. J Mach
Learn Res 1:211–244.https://doi.org/10.
1162/15324430152748236
- Burden FR, Winkler DA (2015) Relevance
vector machines: sparse classification methods
for QSAR. J Chem Inf Model 55
(8):1529–1534. https://doi.org/10.1021/
acs.jcim.5b00261
- Larose DT (2005) k-Nearest neighbor algo-
rithm. In: Discovering knowledge in data.
Wiley, New York, pp 90–106.https://doi.
org/10.1002/0471687545.ch5
- Johnson RA, Wichern DW (2002) Applied
multivariate statistical analysis, vol 8. Prentice
Hall, Upper Saddle River, NJ
- Johnson MA, Maggiora GM (eds) (1990)
Concepts and applications of molecular simi-
larity. Wiley, New York
- Breiman L (2001) Random forests. Machine
Learning 45(1):5–32. citeulike-article-
id:12416445. https://doi.org/10.1023/a%
253a1010933404324
- Romesburg CH (1984) Cluster analysis for
researchers. Lifetime Learning publications,
Belmont, CA
- Contrera JF, Matthews EJ, Daniel Benz R
(2003) Predicting the carcinogenic potential
of pharmaceuticals in rodents using molecular
structural similarity and E-state indices. Regul
Toxicol Pharmacol 38(3):243–259.
S0273230003000710 [pii]
- Netzeva TI, Worth A, Aldenberg T,
Benigni R, Cronin MT, Gramatica P,
Jaworska JS, Kahn S, Klopman G, Marchant
CA, Myatt G, Nikolova-Jeliazkova N, Patle-
wicz GY, Perkins R, Roberts D, Schultz T,
Stanton DW, van de Sandt JJ, Tong W,
Veith G, Yang C (2005) Current status of
methods for defining the applicability domain
of (quantitative) structure-activity relation-
ships. The report and recommendations of
ECVAM Workshop 52. Altern Lab Anim 33
(2):155–173
- Jaworska J, Nikolova-Jeliazkova N, Aldenberg
T (2005) QSAR applicabilty domain estima-
tion by projection of the training set descrip-
tor space: a review. Altern Lab Anim 33
(5):445–459
- Tropsha A, Gramatica P, Gombar VK (2003)
The importance of being earnest: validation is
the absolute essential for successful applica-
tion and interpretation of QSPR models.
QSAR Comb Sci 22(1):69–77.https://doi.
org/10.1002/qsar.200390007
- Lu J, Peng J, Wang J, Shen Q, Bi Y, Gong L,
Zheng M, Luo X, Zhu W, Jiang H, Chen K
(2014) Estimation of acute oral toxicity in rat
using local lazy learning. J Cheminform 6:26.
https://doi.org/10.1186/1758-2946-6-26
- Hosmer DW Jr, Lemeshow S, Sturdivant RX
(2013) Applied logistic regression, vol 398.
Wiley, New York
- Quinlan JR (2014) C4. 5: programs for
machine learning. Elsevier, San Francisco
- Specht DF (1990) Probabilistic neural net-
works and the polynomial Adaline as comple-
mentary techniques for classification. IEEE
Trans Neural Netw 1(1):111–121.https://
doi.org/10.1109/72.80210
- Xue Y, Li H, Ung CY, Yap CW, Chen YZ
(2006) Classification of a diverse set of Tetra-
hymena pyriformis toxicity chemical com-
pounds from molecular descriptors by
statistical learning methods. Chem Res Toxi-
col 19(8):1030–1039. https://doi.org/10.
1021/tx0600550
- Watson P (2008) Naı ̈ve Bayes classification
using 2D Pharmacophore feature triplet vec-
tors. J Chem Inf Model 48(1):166–178.
https://doi.org/10.1021/ci7003253
- Hsu C-W, Lin C-J (2002) A comparison of
methods for multiclass support vector
machines. Trans Neur Netw 13(2):415–425.
https://doi.org/10.1109/72.991427
- Chang CC, Lin CJ. LIBSVM -- A library for
support vector machines. http://www.csie.
ntu.edu.tw/cjlin/libsvm. Accessed 14 Feb
2013
- Fei B, Liu J (2006) Binary tree of SVM: a new
fast multiclass training and classification algo-
rithm. Trans Neur Netw 17(3):696–704.
https://doi.org/10.1109/tnn.2006.872343
- Cheong S, Sang H, Lee SY (2004) Support
vector machines with binary tree architecture
for multi-class classification. Neural Inf Pro-
cess 2:47–51
Machine Learning-Based Modeling of Drug Toxicity 261