Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1
customized carbon total correlation spectros-
copy NMR metabolomics database. Anal
Chem 84(21):9395–9401.https://doi.org/
10.1021/ac302197e


  1. Kwan EE, Huang SG (2008) Structural eluci-
    dation with NMR spectroscopy: practical stra-
    tegies for organic chemists. Eur J Org Chem
    2008(16):2671–2688. https://doi.org/10.
    1002/ejoc.200700966

  2. Bingol K, Bruschweiler R (2011) Deconvolu-
    tion of chemical mixtures with high complex-
    ity by NMR consensus trace clustering. Anal
    Chem 83(19):7412–7417.https://doi.org/
    10.1021/ac201464y

  3. Leek JT, Scharpf RB, Bravo HC, Simcha D,
    Langmead B, Johnson WE, Geman D,
    Baggerly K, Irizarry RA (2010) Tackling the
    widespread and critical impact of batch effects
    in high-throughput data. Nat Rev Genet 11
    (10):733–739. https://doi.org/10.1038/
    nrg2825

  4. Burton L, Ivosev G, Tate S, Impey G,
    Wingate J, Bonner R (2008) Instrumental
    and experimental effects in LC-MS-based
    metabolomics. J Chromatogr B Analyt Tech-
    nol Biomed Life Sci 871(2):227–235.
    https://doi.org/10.1016/j.jchromb.2008.
    04.044

  5. De Livera AM, Sysi-Aho M, Jacob L,
    Gagnon-Bartsch JA, Castillo S, Simpson JA,
    Speed TP (2015) Statistical methods for
    handling unwanted variation in metabolomics
    data. Anal Chem 87(7):3606–3615.https://
    doi.org/10.1021/ac502439y

  6. Hendriks MMWB, van FA E, Jellema RH,
    Westerhuis JA, Reijmers TH, Hoefsloot HCJ,
    Smilde AK (2011) Data-processing strategies
    for metabolomics studies. TrAC Trends Anal
    Chem 30(10):1685–1698.https://doi.org/
    10.1016/j.trac.2011.04.019

  7. Wehrens R, Hageman JA, van Eeuwijk F,
    Kooke R, Flood PJ, Wijnker E, Keurentjes
    JJ, Lommen A, van Eekelen HD, Hall RD,
    Mumm R, de Vos RC (2016) Improved batch
    correction in untargeted MS-based metabo-
    lomics. Metabolomics 12:88. https://doi.
    org/10.1007/s11306-016-1015-8

  8. Brunius C, Shi L, Landberg R (2016) Large-
    scale untargeted LC-MS metabolomics data
    correction using between-batch feature align-
    ment and cluster-based within-batch signal
    intensity drift correction. Metabolomics 12
    (11):173. https://doi.org/10.1007/
    s11306-016-1124-4
    112. Shen X, Gong X, Cai Y, Guo Y, Tu J, Li H,
    Zhang T, Wang J, Xue F, Zhu Z-J (2016)
    Normalization and integration of large-scale
    metabolomics data using support vector
    regression. Metabolomics 12(5):89.https://
    doi.org/10.1007/s11306-016-1026-5
    113. Li B, Tang J, Yang Q, Li S, Cui X, Li Y,
    Chen Y, Xue W, Li X, Zhu F (2017) NOR-
    EVA: normalization and evaluation of
    MS-based metabolomics data. Nucleic Acids
    Res.https://doi.org/10.1093/nar/gkx449
    114. Hochrein J, Zacharias HU, Taruttis F,
    Samol C, Engelmann JC, Spang R, Oefner
    PJ, Gronwald W (2015) Data normalization
    of 1H NMR metabolite fingerprinting data
    sets in the presence of unbalanced metabolite
    regulation. J Proteome Res 14
    (8):3217–3228. https://doi.org/10.1021/
    acs.jproteome.5b00192
    115. Chen J, Zhang P, Lv M, Guo H, Huang Y,
    Zhang Z, Xu F (2017) Influences of normali-
    zation method on biomarker discovery in gas
    chromatography-mass spectrometry-based
    untargeted metabolomics: what should be
    considered? Anal Chem 89(10):5342–5348.
    https://doi.org/10.1021/acs.analchem.
    6b05152
    116. Li B, Tang J, Yang Q, Cui X, Li S, Chen S,
    Cao Q, Xue W, Chen N, Zhu F (2016) Per-
    formance evaluation and online realization of
    data-driven normalization methods used in
    LC/MS based untargeted metabolomics
    analysis. Sci Rep 6:38881.https://doi.org/
    10.1038/srep38881
    117. Putri SP, Yamamoto S, Tsugawa H, Fukusaki
    E (2013) Current metabolomics: technologi-
    cal advances. J Biosci Bioeng 116(1):9–16.
    https://doi.org/10.1016/j.jbiosc.2013.01.
    004
    118. Boccard J, Veuthey JL, Rudaz S (2010)
    Knowledge discovery in metabolomics: an
    overview of MS data handling. J Sep Sci 33
    (3):290–304
    119. Tagore S, Chowdhury N, De RK (2014) Ana-
    lyzing methods for path mining with applica-
    tions in metabolomics. Gene 534
    (2):125–138
    120. Chagoyen M, Pazos F (2013) Tools for the
    functional interpretation of metabolomic
    experiments. Brief Bioinform 14(6):737–744
    121. Johnson CH, Ivanisevic J, Siuzdak G (2016)
    Metabolomics: beyond biomarkers and
    towards mechanisms. Nat Rev Mol Cell Biol
    17(7):451–459


Metabolomics: A High-Throughput Platform for Metabolite Profile Exploration 291
Free download pdf