customized carbon total correlation spectros-
copy NMR metabolomics database. Anal
Chem 84(21):9395–9401.https://doi.org/
10.1021/ac302197e
- Kwan EE, Huang SG (2008) Structural eluci-
dation with NMR spectroscopy: practical stra-
tegies for organic chemists. Eur J Org Chem
2008(16):2671–2688. https://doi.org/10.
1002/ejoc.200700966
- Bingol K, Bruschweiler R (2011) Deconvolu-
tion of chemical mixtures with high complex-
ity by NMR consensus trace clustering. Anal
Chem 83(19):7412–7417.https://doi.org/
10.1021/ac201464y
- Leek JT, Scharpf RB, Bravo HC, Simcha D,
Langmead B, Johnson WE, Geman D,
Baggerly K, Irizarry RA (2010) Tackling the
widespread and critical impact of batch effects
in high-throughput data. Nat Rev Genet 11
(10):733–739. https://doi.org/10.1038/
nrg2825
- Burton L, Ivosev G, Tate S, Impey G,
Wingate J, Bonner R (2008) Instrumental
and experimental effects in LC-MS-based
metabolomics. J Chromatogr B Analyt Tech-
nol Biomed Life Sci 871(2):227–235.
https://doi.org/10.1016/j.jchromb.2008.
04.044
- De Livera AM, Sysi-Aho M, Jacob L,
Gagnon-Bartsch JA, Castillo S, Simpson JA,
Speed TP (2015) Statistical methods for
handling unwanted variation in metabolomics
data. Anal Chem 87(7):3606–3615.https://
doi.org/10.1021/ac502439y
- Hendriks MMWB, van FA E, Jellema RH,
Westerhuis JA, Reijmers TH, Hoefsloot HCJ,
Smilde AK (2011) Data-processing strategies
for metabolomics studies. TrAC Trends Anal
Chem 30(10):1685–1698.https://doi.org/
10.1016/j.trac.2011.04.019
- Wehrens R, Hageman JA, van Eeuwijk F,
Kooke R, Flood PJ, Wijnker E, Keurentjes
JJ, Lommen A, van Eekelen HD, Hall RD,
Mumm R, de Vos RC (2016) Improved batch
correction in untargeted MS-based metabo-
lomics. Metabolomics 12:88. https://doi.
org/10.1007/s11306-016-1015-8
- Brunius C, Shi L, Landberg R (2016) Large-
scale untargeted LC-MS metabolomics data
correction using between-batch feature align-
ment and cluster-based within-batch signal
intensity drift correction. Metabolomics 12
(11):173. https://doi.org/10.1007/
s11306-016-1124-4
112. Shen X, Gong X, Cai Y, Guo Y, Tu J, Li H,
Zhang T, Wang J, Xue F, Zhu Z-J (2016)
Normalization and integration of large-scale
metabolomics data using support vector
regression. Metabolomics 12(5):89.https://
doi.org/10.1007/s11306-016-1026-5
113. Li B, Tang J, Yang Q, Li S, Cui X, Li Y,
Chen Y, Xue W, Li X, Zhu F (2017) NOR-
EVA: normalization and evaluation of
MS-based metabolomics data. Nucleic Acids
Res.https://doi.org/10.1093/nar/gkx449
114. Hochrein J, Zacharias HU, Taruttis F,
Samol C, Engelmann JC, Spang R, Oefner
PJ, Gronwald W (2015) Data normalization
of 1H NMR metabolite fingerprinting data
sets in the presence of unbalanced metabolite
regulation. J Proteome Res 14
(8):3217–3228. https://doi.org/10.1021/
acs.jproteome.5b00192
115. Chen J, Zhang P, Lv M, Guo H, Huang Y,
Zhang Z, Xu F (2017) Influences of normali-
zation method on biomarker discovery in gas
chromatography-mass spectrometry-based
untargeted metabolomics: what should be
considered? Anal Chem 89(10):5342–5348.
https://doi.org/10.1021/acs.analchem.
6b05152
116. Li B, Tang J, Yang Q, Cui X, Li S, Chen S,
Cao Q, Xue W, Chen N, Zhu F (2016) Per-
formance evaluation and online realization of
data-driven normalization methods used in
LC/MS based untargeted metabolomics
analysis. Sci Rep 6:38881.https://doi.org/
10.1038/srep38881
117. Putri SP, Yamamoto S, Tsugawa H, Fukusaki
E (2013) Current metabolomics: technologi-
cal advances. J Biosci Bioeng 116(1):9–16.
https://doi.org/10.1016/j.jbiosc.2013.01.
004
118. Boccard J, Veuthey JL, Rudaz S (2010)
Knowledge discovery in metabolomics: an
overview of MS data handling. J Sep Sci 33
(3):290–304
119. Tagore S, Chowdhury N, De RK (2014) Ana-
lyzing methods for path mining with applica-
tions in metabolomics. Gene 534
(2):125–138
120. Chagoyen M, Pazos F (2013) Tools for the
functional interpretation of metabolomic
experiments. Brief Bioinform 14(6):737–744
121. Johnson CH, Ivanisevic J, Siuzdak G (2016)
Metabolomics: beyond biomarkers and
towards mechanisms. Nat Rev Mol Cell Biol
17(7):451–459
Metabolomics: A High-Throughput Platform for Metabolite Profile Exploration 291