Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1

Acknowledgments


I appreciate help equally from the people listed below. They are
Professor Wenjun Bu; Professor Lin Liu; Ph.D. student Hua Wang;
Master’s student Yu Sun and Deshui Yu from College of Life
Sciences, Nankai University; Professor Jishou Ruan; PhD student
Zhenfeng Wu from School of Mathematical Sciences, Nankai Uni-
versity; and Associate Professor Weixiang Liu from Shenzhen
University.

References



  1. Gao S, Ou J, Xiao K (2014) R language and
    Bioconductor in bioinformatics applications
    (Chinese Edition). Tianjin Science and Technol-
    ogy Translation Publishing, Co. Ltd, Tianjin

  2. Stegle O, Teichmann SA, Marioni JC (2015)
    Computational and analytical challenges in
    single-cell transcriptomics. Nat Rev Genet 16
    (3):133–145

  3. Zhang M, Sun H, Fei Z, Zhan F, Gong X, Gao
    S (2014) Fastq_clean: an optimized pipeline to
    clean the Illumina sequencing data with quality
    control. 2014 I.E. international conference on
    bioinformatics and biomedicine, pp 44–48

  4. Ziegenhain C, Vieth B, Parekh S, Reinius B,
    Guillaumet-Adkins A, Smets M, Leonhardt H,
    Heyn H, Hellmann I, Enard W (2017) Com-
    parative analysis of single-cell RNA sequencing
    methods. Mol Cell 65(4):631–643

  5. Gao S, Tian X, Chang H, Sun Y, Wu Z,
    Cheng Z, Dong P, Zhao Q, Ruan J, Bu W
    (2017) Two novel lncRNAs discovered in
    human mitochondrial DNA using PacBio full-
    length transcriptome data. Mitochondrion.
    https://doi.org/10.1016/j.mito.2017.08.002

  6. Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO,
    Mccarthy DJ, Marioni JC,TeichmannSA (2016)
    Classification of low quality cells from single-cell
    RNA-seq data. Genome Biol 17(1):29

  7. Anders S, Huber W (2010) Differential expres-
    sion analysis for sequence count data. Genome
    Biol 11(10):R106

  8. Robinson MD, Mccarthy DJ, Smyth GK (2010)
    edgeR: a Bioconductor package for differential
    expression analysis of digital gene expression
    data. Bioinformatics 26(1):139–140

  9. Zhang Y, Li D, Sun B (2015) Do housekeeping
    genes exist? PLoS One 10(5):e0123691

  10. Jiang L, Schlesinger F, Davis CA, Zhang Y,
    Li R, Salit M, Gingeras TR, Oliver B (2011)
    Synthetic spike-in standards for RNA-seq
    experiments. Genome Res 21(9):1543–1551

  11. Risso D, Ngai J, Speed TP, Dudoit S (2014)
    Normalization of RNA-seq data using factor
    analysis of control genes or samples. Nat Bio-
    technol 32(9):896–902

  12. Love ́n J, Orlando DA, Sigova AA, Lin CY, Rahl
    PB, Burge CB, Levens DL, Lee TI, Young RA
    (2012) Revisiting global gene expression anal-
    ysis. Cell 151(3):476–482

  13. Islam S, Zeisel A, Joost S, La MG, Zajac P,
    Kasper M, Lo ̈nnerberg P, Linnarsson S
    (2014) Quantitative single-cell RNA-seq with
    unique molecular identifiers. Nat Methods 11
    (2):163–166

  14. Lun AT, Bach K, Marioni JC (2016) Pooling
    across cells to normalize single-cell RNA
    sequencing data with many zero counts.
    Genome Biol 17(1):75

  15. Ren Y, Zhang J, Sun Y, Wu Z, Ruan J, He B,
    Liu G, Gao S, Bu W (2016) Full-length tran-
    scriptome sequencing on PacBio platform
    (in Chinese). Chin Sci Bull 11(61):1250–1254

  16. Satija R, Farrell JA, Gennert D, Schier AF,
    Regev A (2015) Spatial reconstruction of
    single-cell gene expression data. Nat Biotech-
    nol 33(5):495–502

  17. Wold S, Esbensen K, Geladi P (1987) Principal
    component analysis. Chemometr Intell Lab
    Syst 2(1–3):37–52

  18. Hyvarinen A, Oja E (2000) Independent com-
    ponent analysis: algorithms and applications.
    Neural Netw 13(4–5):411–430

  19. Balakrishnama S, Ganapathiraju A (1998) Lin-
    ear discriminant analysis – a brief tutorial. Pro-
    cof Intjoint Confon Neural Networks 3
    (94):387–391

  20. Carroll JD, Arabie P (1980) Multidimensional
    scaling. Annu Rev Psychol 31(31):607–649

  21. Maaten LVD, Hinton G (2008) Viualizing
    data using t-SNE. J Mach Learn Res 9
    (2605):2579–2605


Data Analysis in Single-Cell Transcriptome Sequencing 325
Free download pdf