Table 1(continued)ToolDescriptionRequirementsTypeInterfaceOperatingsystemPrograminglanguages ReferencesDestinyExtends diffusion maps(a nonlinear dimensionreduction approach) to handlezeros and sampling densityheterogeneities inherent insingle-cell dataRequires variance-stabilizedgene expression estimates;works best with a largenumber of cellsPackageCommandlineUnix/Linux,Mac OS,WindowsR[99]SNN-CliqClusters cells by identifying andmerging subgraphs (quasi-cliques) in a shared nearestneighbor (SNN) graph; thenumber of clusters is chosenautomaticallyRequires a reduced set of genes.The authors recommendusing genes with averageRPKM>20 and using a logtransformation to reduce theeffect of outliers. Relies on avalid choice of graphparametersPackageCommandlineUnix/LinuxMATLAB,Python[^100]SCUBAUses k-means to cluster dataalong a binary tree detailingbifurcation events for timecourse data. Modelsexpression regulation alongthe tree using bifurcationtheoryRequires a reduced set of genes.The authors recommendusing the 1000 most variablegenes that are expressed in atleast 30% of cellsPackageCommandlineUnix/Linux,Mac OS,WindowsMATLAB [101]Cell lineage and pseudotime inferenceMonocleReduces data using independentcomponent analysis (ICA) andconstructs a minimumspanning tree (MST) to ordercells in pseudotimeRequires normalized,log-transformed geneexpression estimates and areduced set of genes. Theauthors recommendToolkitCommandlineUnix/Linux,Mac OS[^30]344 Yungang Xu and Xiaobo Zhou