on prior assumptions or using unsupervised clustering [63]) and
extract for each cell the average epigenetic state in each of the
groups, thereby overcoming missing data. In such cases, reference
epigenomic maps can be used efficiently to form groups of ele-
ments, such as promoters, enhancers, or insulators, which can be
pooled together to allow comparison of the epigenetic states of
individual cells.
References
- Stegle O, Teichmann SA, Marioni JC (2015)
Computational and analytical challenges in
single-cell transcriptomics. Nat Rev Genet
16(3):133–145. https://doi.org/10.1038/
nrg3833 - Gawad C, Koh W, Quake SR (2016) Single-
cell genome sequencing: current state of the
science. Nat Rev Genet 17(3):175–188.
https://doi.org/10.1038/nrg.2015.16 - Schwartzman O, Tanay A (2015) Single-cell
epigenomics: techniques and emerging appli-
cations. Nat Rev Genet 16(12):716–726.
https://doi.org/10.1038/nrg3980 - Barkla BJ, Vera-Estrella R, Raymond C
(2016) Single-cell-type quantitative proteo-
mic and ionomic analysis of epidermal bladder
cells from the halophyte model plant Mesem-
bryanthemum crystallinum to identify salt-
responsive proteins. BMC Plant Biol 16.
https://doi.org/10.1186/S12870-016-
0797-1 - Wu MY, Singh AK (2012) Single-cell protein
analysis. Curr Opin Biotechnol 23(1):83–88.
https://doi.org/10.1016/j.copbio.2011.11.
023 - Baslan T, Kendall J, Rodgers L, Cox H,
Riggs M, Stepansky A, Troge J, Ravi K,
Esposito D, Lakshmi B, Wigler M, Navin
N, Hicks J (2012) Genome-wide copy num-
ber analysis of single cells. Nat Protoc 7
(6):1024–1041. https://doi.org/10.1038/
nprot.2012.039 - Habib N, Li YQ, Heidenreich M, Swiech L,
Avraham-Davidi I, Trombetta JJ, Hession C,
Zhang F, Regev A (2016) Div-Seq: single-
nucleus RNA-Seq reveals dynamics of rare
adult newborn neurons. Science 353
(6302):925–928.https://doi.org/10.1126/
science.aad7038 - Hou Y, Guo HH, Cao C, Li XL, Hu BQ, Zhu
P, Wu XL, Wen L, Tang FC, Huang YY, Peng
JR (2016) Single-cell triple omics sequencing
reveals genetic, epigenetic, and transcriptomic
heterogeneity in hepatocellular carcinomas.
Cell Res 26(3):304–319. https://doi.org/
10.1038/cr.2016.23
9. Gross A, Schoendube J, Zimmermann S,
Steeb M, Zengerle R, Koltay P (2015) Tech-
nologies for single-cell isolation. Int J Mol Sci
16(8):16897–16919. https://doi.org/10.
3390/ijms160816897 - Osborne GW (2011) Recent advances in flow
cytometric cell sorting. Methods Cell Biol
102:533–556. https://doi.org/10.1016/
B978-0-12-374912-3.00021-3 - Xin YR, Kim J, Ni M, Wei Y, Okamoto H, Lee
J, Adler C, Cavino K, Murphy AJ, Yancopou-
los GD, Lin HC, Gromada J (2016) Use of
the Fluidigm C1 platform for RNA sequenc-
ing of single mouse pancreatic islet cells. Proc
Natl Acad Sci U S A 113(12):3293–3298.
https://doi.org/10.1073/pnas.
1602306113 - Strey HH, Brouzes E, Kruse T (2013) Drop-
let microfluidic technologies for high-
throughput single-cell gene expression analy-
sis. Biophys J 104(2):676a - Brouzes E, Medkova M, Savenelli N, Marran
D, Twardowski M, Hutchison JB, Rothberg
JM, Link DR, Perrimon N, Samuels ML
(2009) Droplet microfluidic technology for
single-cell high-throughput screening. Proc
Natl Acad Sci U S A 106(34):14195–14200.
https://doi.org/10.1073/pnas.
0903542106 - Gomez-Sjoberg R, Leyrat AA, Pirone DM,
Chen CS, Quake SR (2007) Versatile, fully
automated, microfluidic cell culture system.
Anal Chem 79(22):8557–8563.https://doi.
org/10.1021/ac071311w - Ino K, Okochi M, Konishi N, Nakatochi M,
Imai R, Shikida M, Ito A, Honda H (2008)
Cell culture arrays using magnetic force-based
cell patterning for dynamic single cell analysis.
Lab Chip 8(1):134–142.https://doi.org/10.
1039/b712330b - Di Carlo D, Wu LY, Lee LP (2006) Dynamic
single cell culture array. Lab Chip 6
(11):1445–1449.https://doi.org/10.1039/
b605937f - Zhang K, Han X, Li Y, Li SY, Zu YL, Wang
ZQ, Qin LD (2014) Hand-held and
364 Yungang Xu and Xiaobo Zhou