Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1

  1. Campbell KR, Yau C (2017) switchde: infer-
    ence of switch-like differential expression
    along single-cell trajectories. Bioinformatics
    33(8):1241–1242. https://doi.org/10.
    1093/bioinformatics/btw798

  2. Campbell K, Yau C (2016) Ouija: incorporat-
    ing prior knowledge in single-cell trajectory
    learning using Bayesian nonlinear factor anal-
    ysis. bioRxiv 2016:060442

  3. Campbell K, Ponting CP, Webber C (2015)
    Laplacian eigenmaps and principal curves for
    high resolution pseudotemporal ordering of
    single-cell RNA-seq profiles. bioRxiv
    2015:027219

  4. Risso D, Perraudeau F, Gribkova S, Dudoit S,
    Vert J-P (2017) ZINB-WaVE: a general and
    flexible method for signal extraction from sin-
    gle-cell RNA-seq data. bioRxiv 2017:125112

  5. Shaham U, Stanton KP, Li H, Montgomery
    R, Kluger Y (2016) Removal of batch effects
    using distribution-matching residual net-
    works. arXiv 2016:161004181

  6. Streets AM, Huang YY (2014) How deep is
    enough in single-cell RNA-seq? Nat Biotech-
    nol 32(10):1005–1006.https://doi.org/10.
    1038/nbt.3039

  7. Saliba AE, Westermann AJ, Gorski SA, Vogel
    J (2014) Single-cell RNA-seq: advances and
    future challenges. Nucleic Acids Res 42
    (14):8845–8860.https://doi.org/10.1093/
    nar/gku555

  8. Trapnell C, Pachter L, Salzberg SL (2009)
    TopHat: discovering splice junctions with
    RNA-Seq. Bioinformatics 25(9):1105–1111.
    https://doi.org/10.1093/bioinformatics/
    btp120

  9. Guttman M, Garber M, Levin JZ, Donaghey
    J, Robinson J, Adiconis X, Fan L, Koziol MJ,
    Gnirke A, Nusbaum C, Rinn JL, Lander ES,
    Regev A (2010) Ab initio reconstruction of
    cell type-specific transcriptomes in mouse
    reveals the conserved multi-exonic structure
    of lincRNAs. Nat Biotechnol 28
    (5):503–U166. https://doi.org/10.1038/
    nbt.1633

  10. Jiang LC, Schlesinger F, Davis CA, Zhang Y,
    Li RH, Salit M, Gingeras TR, Oliver B (2011)
    Synthetic spike-in standards for RNA-seq
    experiments. Genome Res 21
    (9):1543–1551. https://doi.org/10.1101/
    gr.121095.111

  11. Fu GK, Hu J, Wang PH, Fodor SPA (2011)
    Counting individual DNA molecules by the
    stochastic attachment of diverse labels. Proc
    Natl Acad Sci U S A 108(22):9026–9031.
    https://doi.org/10.1073/pnas.
    1017621108
    122. Anders S, Pyl PT, Huber W (2015) HTSeq-a
    Python framework to work with high-
    throughput sequencing data. Bioinformatics
    31(2):166–169. https://doi.org/10.1093/
    bioinformatics/btu638
    123. Welch JD, Hu Y, Prins JF (2016) Robust
    detection of alternative splicing in a popula-
    tion of single cells. Nucleic Acids Res 44(8).
    https://doi.org/10.1093/nar/gkv1525
    124. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trap-
    nell C (2017) Single-cell mRNA quantifica-
    tion and differential analysis with census. Nat
    Methods 14(3):309–315. https://doi.org/
    10.1038/nmeth.4150
    125. Davis MP, van Dongen S, Abreu-Goodger C,
    Bartonicek N, Enright AJ (2013) Kraken: a
    set of tools for quality control and analysis of
    high-throughput sequence data. Methods 63
    (1):41–49. https://doi.org/10.1016/j.
    ymeth.2013.06.027
    126. Thorvaldsdottir H, Robinson JT, Mesirov JP
    (2013) Integrative genomics viewer (IGV):
    high-performance genomics data visualiza-
    tion and exploration. Brief Bioinform 14
    (2):178–192. https://doi.org/10.1093/
    bib/bbs017
    127. Robinson JT, Thorvaldsdottir H, Winckler
    W, Guttman M, Lander ES, Getz G, Mesirov
    JP (2011) Integrative genomics viewer. Nat
    Biotechnol 29(1):24–26. https://doi.org/
    10.1038/nbt.1754
    128. Krebs JE, Lewin B, Goldstein ES, Kilpatrick
    ST (2014) Lewin’s genes XI. Jones & Bartlett
    Publishers, Burlington, MA
    129. Brennecke P, Anders S, Kim JK, Kolodziejc-
    zyk AA, Zhang XW, Proserpio V, Baying B,
    Benes V, Teichmann SA, Marioni JC, Heisler
    MG (2014) Accounting for technical noise in
    single-cell RNA-seq experiments (vol 10: p.
    1093, 2013). Nat Methods 11(2):210–210.
    https://doi.org/10.1038/nmeth0214-210b
    130. Vallejos CA, Marioni JC, Richardson S
    (2015) BASiCS: Bayesian analysis of single-
    cell sequencing data. PLoS Comput Biol 11
    (6). https://doi.org/10.1371/journal.pcbi.
    1004333
    131. Vallejos CA, Richardson S, Marioni JC
    (2016) Beyond comparisons of means: under-
    standing changes in gene expression at the
    single-cell level. Genome Biol 17.https://
    doi.org/10.1186/s13059-016-0930-3
    132. Risso D, Ngai J, Speed TP, Dudoit S (2014)
    Normalization of RNA-seq data using factor
    analysis of control genes or samples. Nat Bio-
    technol 32(9):896–902.https://doi.org/10.
    1038/nbt.2931


370 Yungang Xu and Xiaobo Zhou

Free download pdf