- Campbell KR, Yau C (2017) switchde: infer-
ence of switch-like differential expression
along single-cell trajectories. Bioinformatics
33(8):1241–1242. https://doi.org/10.
1093/bioinformatics/btw798 - Campbell K, Yau C (2016) Ouija: incorporat-
ing prior knowledge in single-cell trajectory
learning using Bayesian nonlinear factor anal-
ysis. bioRxiv 2016:060442 - Campbell K, Ponting CP, Webber C (2015)
Laplacian eigenmaps and principal curves for
high resolution pseudotemporal ordering of
single-cell RNA-seq profiles. bioRxiv
2015:027219 - Risso D, Perraudeau F, Gribkova S, Dudoit S,
Vert J-P (2017) ZINB-WaVE: a general and
flexible method for signal extraction from sin-
gle-cell RNA-seq data. bioRxiv 2017:125112 - Shaham U, Stanton KP, Li H, Montgomery
R, Kluger Y (2016) Removal of batch effects
using distribution-matching residual net-
works. arXiv 2016:161004181 - Streets AM, Huang YY (2014) How deep is
enough in single-cell RNA-seq? Nat Biotech-
nol 32(10):1005–1006.https://doi.org/10.
1038/nbt.3039 - Saliba AE, Westermann AJ, Gorski SA, Vogel
J (2014) Single-cell RNA-seq: advances and
future challenges. Nucleic Acids Res 42
(14):8845–8860.https://doi.org/10.1093/
nar/gku555 - Trapnell C, Pachter L, Salzberg SL (2009)
TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics 25(9):1105–1111.
https://doi.org/10.1093/bioinformatics/
btp120 - Guttman M, Garber M, Levin JZ, Donaghey
J, Robinson J, Adiconis X, Fan L, Koziol MJ,
Gnirke A, Nusbaum C, Rinn JL, Lander ES,
Regev A (2010) Ab initio reconstruction of
cell type-specific transcriptomes in mouse
reveals the conserved multi-exonic structure
of lincRNAs. Nat Biotechnol 28
(5):503–U166. https://doi.org/10.1038/
nbt.1633 - Jiang LC, Schlesinger F, Davis CA, Zhang Y,
Li RH, Salit M, Gingeras TR, Oliver B (2011)
Synthetic spike-in standards for RNA-seq
experiments. Genome Res 21
(9):1543–1551. https://doi.org/10.1101/
gr.121095.111 - Fu GK, Hu J, Wang PH, Fodor SPA (2011)
Counting individual DNA molecules by the
stochastic attachment of diverse labels. Proc
Natl Acad Sci U S A 108(22):9026–9031.
https://doi.org/10.1073/pnas.
1017621108
122. Anders S, Pyl PT, Huber W (2015) HTSeq-a
Python framework to work with high-
throughput sequencing data. Bioinformatics
31(2):166–169. https://doi.org/10.1093/
bioinformatics/btu638
123. Welch JD, Hu Y, Prins JF (2016) Robust
detection of alternative splicing in a popula-
tion of single cells. Nucleic Acids Res 44(8).
https://doi.org/10.1093/nar/gkv1525
124. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trap-
nell C (2017) Single-cell mRNA quantifica-
tion and differential analysis with census. Nat
Methods 14(3):309–315. https://doi.org/
10.1038/nmeth.4150
125. Davis MP, van Dongen S, Abreu-Goodger C,
Bartonicek N, Enright AJ (2013) Kraken: a
set of tools for quality control and analysis of
high-throughput sequence data. Methods 63
(1):41–49. https://doi.org/10.1016/j.
ymeth.2013.06.027
126. Thorvaldsdottir H, Robinson JT, Mesirov JP
(2013) Integrative genomics viewer (IGV):
high-performance genomics data visualiza-
tion and exploration. Brief Bioinform 14
(2):178–192. https://doi.org/10.1093/
bib/bbs017
127. Robinson JT, Thorvaldsdottir H, Winckler
W, Guttman M, Lander ES, Getz G, Mesirov
JP (2011) Integrative genomics viewer. Nat
Biotechnol 29(1):24–26. https://doi.org/
10.1038/nbt.1754
128. Krebs JE, Lewin B, Goldstein ES, Kilpatrick
ST (2014) Lewin’s genes XI. Jones & Bartlett
Publishers, Burlington, MA
129. Brennecke P, Anders S, Kim JK, Kolodziejc-
zyk AA, Zhang XW, Proserpio V, Baying B,
Benes V, Teichmann SA, Marioni JC, Heisler
MG (2014) Accounting for technical noise in
single-cell RNA-seq experiments (vol 10: p.
1093, 2013). Nat Methods 11(2):210–210.
https://doi.org/10.1038/nmeth0214-210b
130. Vallejos CA, Marioni JC, Richardson S
(2015) BASiCS: Bayesian analysis of single-
cell sequencing data. PLoS Comput Biol 11
(6). https://doi.org/10.1371/journal.pcbi.
1004333
131. Vallejos CA, Richardson S, Marioni JC
(2016) Beyond comparisons of means: under-
standing changes in gene expression at the
single-cell level. Genome Biol 17.https://
doi.org/10.1186/s13059-016-0930-3
132. Risso D, Ngai J, Speed TP, Dudoit S (2014)
Normalization of RNA-seq data using factor
analysis of control genes or samples. Nat Bio-
technol 32(9):896–902.https://doi.org/10.
1038/nbt.2931
370 Yungang Xu and Xiaobo Zhou