Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1

  1. Yadav VK, De S (2015) An assessment of
    computational methods for estimating purity
    and clonality using genomic data derived
    from heterogeneous tumor tissue samples.
    Brief Bioinform 16(2):232–241. https://
    doi.org/10.1093/bib/bbu002

  2. Tang FC, Barbacioru C, Bao SQ, Lee C,
    Nordman E, Wang XH, Lao KQ, Surani MA
    (2010) Tracing the derivation of embryonic
    stem cells from the inner cell mass by single-
    cell RNA-seq analysis. Cell Stem Cell 6
    (5):468–478. https://doi.org/10.1016/j.
    stem.2010.03.015

  3. Treutlein B, Brownfield DG, Wu AR, Neff
    NF, Mantalas GL, Espinoza FH, Desai TJ,
    Krasnow MA, Quake SR (2014) Reconstruct-
    ing lineage hierarchies of the distal lung epi-
    thelium using single-cell RNA-seq. Nature
    509(7500):371. https://doi.org/10.1038/
    nature13173

  4. Durruthy-Durruthy R, Gottlieb A, Hartman
    BH, Waldhaus J, Laske RD, Altman R, Heller
    S (2014) Reconstruction of the mouse oto-
    cyst and early neuroblast lineage at single-cell
    resolution. Cell 157(4):964–978. https://
    doi.org/10.1016/j.cell.2014.03.036

  5. Moignard V, Macaulay IC, Swiers G, Buettner
    F, Schutte J, Calero-Nieto FJ, Kinston S,
    Joshi A, Hannah R, Theis FJ, Jacobsen SE,
    de Bruijn MF, Gottgens B (2013) Character-
    ization of transcriptional networks in blood
    stem and progenitor cells using high-
    throughput single-cell gene expression analy-
    sisNat. Cell Biol 15(4):363.https://doi.org/
    10.1038/ncb2709

  6. Mahata B, Zhang XW, Kolodziejczyk AA,
    Proserpio V, Haim-Vilmovsky L, Taylor AE,
    Hebenstreit D, Dingler FA, Moignard V,
    Gottgens B, Arlt W, McKenzie ANJ, Teich-
    mann SA (2014) Single-cell RNA sequencing
    reveals T helper cells synthesizing steroids de
    novo to contribute to immune homeostasis.
    Cell Rep 7(4):1130–1142.https://doi.org/
    10.1016/j.celrep.2014.04.011

  7. Patel AP, Tirosh I, Trombetta JJ, Shalek AK,
    Gillespie SM, Wakimoto H, Cahill DP, Nahed
    BV, Curry WT, Martuza RL, Louis DN,
    Rozenblatt-Rosen O, Suva ML, Regev A,
    Bernstein BE (2014) Single-cell RNA-seq
    highlights intratumoral heterogeneity in pri-
    mary glioblastoma. Science 344
    (6190):1396–1401. https://doi.org/10.
    1126/science.1254257

  8. Anders S, Huber W (2010) Differential
    expression analysis for sequence count data.
    Genome Biol 11(10). https://doi.org/10.
    1186/Gb-2010-11-10-R106
    141. Zhou XB, Lindsay H, Robinson MD (2014)
    Robustly detecting differential expression in
    RNA sequencing data using observation
    weights. Nucleic Acids Res 42(11).https://
    doi.org/10.1093/nar/gku310
    142. Robinson MD, McCarthy DJ, Smyth GK
    (2010) edgeR: a Bioconductor package for
    differential expression analysis of digital gene
    expression data. Bioinformatics 26
    (1):139–140.https://doi.org/10.1093/bio
    informatics/btp616
    143. Trapnell C, Roberts A, Goff L, Pertea G, Kim
    D, Kelley DR, Pimentel H, Salzberg SL, Rinn
    JL, Pachter L (2014) Differential gene and
    transcript expression analysis of RNA-seq
    experiments with TopHat and Cufflinks (vol
    7: p. 562, 2012). Nat Protoc 9
    (10):2513–2513.https://doi.org/10.1038/
    nprot1014-2513a
    144. Trapnell C, Roberts A, Goff L, Pertea G, Kim
    D, Kelley DR, Pimentel H, Salzberg SL, Rinn
    JL, Pachter L (2012) Differential gene and
    transcript expression analysis of RNA-seq
    experiments with TopHat and Cufflinks. Nat
    Protoc 7(3):562–578. https://doi.org/10.
    1038/nprot.2012.016
    145. Rapaport F, Khanin R, Liang YP, Pirun M,
    Krek A, Zumbo P, Mason CE, Socci ND,
    Betel D (2013) Comprehensive evaluation of
    differential gene expression analysis methods
    for RNA-seq data. Genome Biol 14(9).
    https://doi.org/10.1186/Gb-2013-14-9-
    R95
    146. Shalek AK, Satija R, Adiconis X, Gertner RS,
    Gaublomme JT, Raychowdhury R, Schwartz
    S, Yosef N, Malboeuf C, Lu DN, Trombetta
    JJ, Gennert D, Gnirke A, Goren A, Hacohen
    N, Levin JZ, Park H, Regev A (2013) Single-
    cell transcriptomics reveals bimodality in
    expression and splicing in immune cells.
    Nature 498(7453):236–240. https://doi.
    org/10.1038/nature12172
    147. Anders S, Reyes A, Huber W (2012) Detect-
    ing differential usage of exons from RNA-seq
    data. Genome Res 22(10):2008–2017.
    https://doi.org/10.1101/gr.133744.111
    148. Katz Y, Wang ET, Airoldi EM, Burge CB
    (2010) Analysis and design of RNA sequenc-
    ing experiments for identifying isoform regu-
    lation. Nat Methods 7(12):1009–U1101.
    https://doi.org/10.1038/Nmeth.1528
    149. Kim JK, Marioni JC (2013) Inferring the
    kinetics of stochastic gene expression from
    single-cell RNA-sequencing data. Genome
    Biol 14(1):R7. https://doi.org/10.1186/
    gb-2013-14-1-r7
    150. Deng Q, Ramskold D, Reinius B, Sandberg R
    (2014) Single-cell RNA-seq reveals dynamic,


Applications of Single-Cell Sequencing for Multiomics 371
Free download pdf