- Yadav VK, De S (2015) An assessment of
computational methods for estimating purity
and clonality using genomic data derived
from heterogeneous tumor tissue samples.
Brief Bioinform 16(2):232–241. https://
doi.org/10.1093/bib/bbu002 - Tang FC, Barbacioru C, Bao SQ, Lee C,
Nordman E, Wang XH, Lao KQ, Surani MA
(2010) Tracing the derivation of embryonic
stem cells from the inner cell mass by single-
cell RNA-seq analysis. Cell Stem Cell 6
(5):468–478. https://doi.org/10.1016/j.
stem.2010.03.015 - Treutlein B, Brownfield DG, Wu AR, Neff
NF, Mantalas GL, Espinoza FH, Desai TJ,
Krasnow MA, Quake SR (2014) Reconstruct-
ing lineage hierarchies of the distal lung epi-
thelium using single-cell RNA-seq. Nature
509(7500):371. https://doi.org/10.1038/
nature13173 - Durruthy-Durruthy R, Gottlieb A, Hartman
BH, Waldhaus J, Laske RD, Altman R, Heller
S (2014) Reconstruction of the mouse oto-
cyst and early neuroblast lineage at single-cell
resolution. Cell 157(4):964–978. https://
doi.org/10.1016/j.cell.2014.03.036 - Moignard V, Macaulay IC, Swiers G, Buettner
F, Schutte J, Calero-Nieto FJ, Kinston S,
Joshi A, Hannah R, Theis FJ, Jacobsen SE,
de Bruijn MF, Gottgens B (2013) Character-
ization of transcriptional networks in blood
stem and progenitor cells using high-
throughput single-cell gene expression analy-
sisNat. Cell Biol 15(4):363.https://doi.org/
10.1038/ncb2709 - Mahata B, Zhang XW, Kolodziejczyk AA,
Proserpio V, Haim-Vilmovsky L, Taylor AE,
Hebenstreit D, Dingler FA, Moignard V,
Gottgens B, Arlt W, McKenzie ANJ, Teich-
mann SA (2014) Single-cell RNA sequencing
reveals T helper cells synthesizing steroids de
novo to contribute to immune homeostasis.
Cell Rep 7(4):1130–1142.https://doi.org/
10.1016/j.celrep.2014.04.011 - Patel AP, Tirosh I, Trombetta JJ, Shalek AK,
Gillespie SM, Wakimoto H, Cahill DP, Nahed
BV, Curry WT, Martuza RL, Louis DN,
Rozenblatt-Rosen O, Suva ML, Regev A,
Bernstein BE (2014) Single-cell RNA-seq
highlights intratumoral heterogeneity in pri-
mary glioblastoma. Science 344
(6190):1396–1401. https://doi.org/10.
1126/science.1254257 - Anders S, Huber W (2010) Differential
expression analysis for sequence count data.
Genome Biol 11(10). https://doi.org/10.
1186/Gb-2010-11-10-R106
141. Zhou XB, Lindsay H, Robinson MD (2014)
Robustly detecting differential expression in
RNA sequencing data using observation
weights. Nucleic Acids Res 42(11).https://
doi.org/10.1093/nar/gku310
142. Robinson MD, McCarthy DJ, Smyth GK
(2010) edgeR: a Bioconductor package for
differential expression analysis of digital gene
expression data. Bioinformatics 26
(1):139–140.https://doi.org/10.1093/bio
informatics/btp616
143. Trapnell C, Roberts A, Goff L, Pertea G, Kim
D, Kelley DR, Pimentel H, Salzberg SL, Rinn
JL, Pachter L (2014) Differential gene and
transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks (vol
7: p. 562, 2012). Nat Protoc 9
(10):2513–2513.https://doi.org/10.1038/
nprot1014-2513a
144. Trapnell C, Roberts A, Goff L, Pertea G, Kim
D, Kelley DR, Pimentel H, Salzberg SL, Rinn
JL, Pachter L (2012) Differential gene and
transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat
Protoc 7(3):562–578. https://doi.org/10.
1038/nprot.2012.016
145. Rapaport F, Khanin R, Liang YP, Pirun M,
Krek A, Zumbo P, Mason CE, Socci ND,
Betel D (2013) Comprehensive evaluation of
differential gene expression analysis methods
for RNA-seq data. Genome Biol 14(9).
https://doi.org/10.1186/Gb-2013-14-9-
R95
146. Shalek AK, Satija R, Adiconis X, Gertner RS,
Gaublomme JT, Raychowdhury R, Schwartz
S, Yosef N, Malboeuf C, Lu DN, Trombetta
JJ, Gennert D, Gnirke A, Goren A, Hacohen
N, Levin JZ, Park H, Regev A (2013) Single-
cell transcriptomics reveals bimodality in
expression and splicing in immune cells.
Nature 498(7453):236–240. https://doi.
org/10.1038/nature12172
147. Anders S, Reyes A, Huber W (2012) Detect-
ing differential usage of exons from RNA-seq
data. Genome Res 22(10):2008–2017.
https://doi.org/10.1101/gr.133744.111
148. Katz Y, Wang ET, Airoldi EM, Burge CB
(2010) Analysis and design of RNA sequenc-
ing experiments for identifying isoform regu-
lation. Nat Methods 7(12):1009–U1101.
https://doi.org/10.1038/Nmeth.1528
149. Kim JK, Marioni JC (2013) Inferring the
kinetics of stochastic gene expression from
single-cell RNA-sequencing data. Genome
Biol 14(1):R7. https://doi.org/10.1186/
gb-2013-14-1-r7
150. Deng Q, Ramskold D, Reinius B, Sandberg R
(2014) Single-cell RNA-seq reveals dynamic,
Applications of Single-Cell Sequencing for Multiomics 371