Computational Drug Discovery and Design

(backadmin) #1

  1. Ganesan A, Coote ML, Barakat K (2017)
    Molecular dynamics-driven drug discovery:
    leaping forward with confidence. Drug Discov
    Today 22(2):249–269

  2. Perot S, Sperandio O, Miteva MA, Camproux
    AC, Villoutreix BO (2010) Druggable pockets
    and binding site centric chemical space: a para-
    digm shift in drug discovery. Drug Discov
    Today 15(15–16):656–667

  3. Brady GP Jr, Stouten PF (2000) Fast predic-
    tion and visualization of protein binding pock-
    ets with PASS. J Comput Aided Mol Des 14
    (4):383–401

  4. Levitt DG, Banaszak LJ (1992) POCKET: a
    computer graphics method for identifying and
    displaying protein cavities and their surround-
    ing amino acids. J Mol Graph 10(4):229–234

  5. Hendlich MF, Rippmann BG (1997) LIG-
    SITE: automatic and efficient detection of
    potential small molecule-binding sites in pro-
    teins. J Mol Graph Model 15(6):359–363. 389

  6. Goodford PJ (1985) A computational proce-
    dure for determining energetically favorable
    binding sites on biologically important macro-
    molecules. J Med Chem 28(7):849–857

  7. Laurie AT, Jackson RM (2005) Q-SiteFinder:
    an energy-based method for the prediction of
    protein-ligand binding sites. Bioinformatics 21
    (9):1908–1916

  8. Villoutreix BO, Kuenemann MA, Poyet JL
    (2004) Drug-like protein-protein interaction
    modulators: challenges and opportunities for
    drug discovery and chemical biology. Mol
    Inform 33(6–7):414–437

  9. Bourgeas R, Basse MJ, Morelli X, Roche P
    (2010) Atomic analysis of protein-protein
    interfaces with known inhibitors: the 2P2I
    database. PLoS One 5(3):e9598

  10. Ivetac A, McCammon JA (2010) Mapping the
    druggable allosteric space of G-protein coupled
    receptors: a fragment-based molecular dynam-
    ics approach. Chem Biol Drug Des 76
    (3):201–217

  11. Landon MR, Lancia DR, Yu J, Thiel SC, Vajda
    S (2007) Identification of hot spots within
    druggable binding regions by computational
    solvent mapping of proteins. J Med Chem 50
    (6):1231–1240

  12. Miao Y, Nichols SE, McCammon JA (2014)
    Mapping of allosteric druggable sites in
    activation-associated conformers of the M2
    muscarinic receptor. Chem Biol Drug Des 83
    (2):237–246

  13. Kozakov D, Grove LE, Hall DR et al (2015)
    The FTMap family of web servers for determin-
    ing and characterizing ligand-binding hot
    spots of proteins. Nat Protoc 10(5):733–755
    35. Cheng AC, Coleman RG, Smyth KT et al
    (2007) Structure-based maximal affinity
    model predicts small-molecule druggability.
    Nat Biotechnol 25(1):71–75
    36. Makley LN, Gestwicki JE (2013) Expanding
    the number of ’druggable’ targets:
    non-enzymes and protein-protein interactions.
    Chem Biol Drug Des 81(1):22–32
    37. Fauman EB, Rai BK, Huang ES (2011)
    Structure-based druggability assessment--iden-
    tifying suitable targets for small molecule ther-
    apeutics. Curr Opin Chem Biol 15
    (4):463–468
    38. Craig IR, Pfleger C, Gohlke H, Essex JW, Spie-
    gel K (2011) Pocket-space maps to identify
    novel binding-site conformations in proteins.
    J Chem Inf Model 51(10):2666–2679
    39. Yang CY, Wang S (2011) Hydrophobic bind-
    ing hot spots of Bcl-xL protein-protein inter-
    faces by Cosolvent molecular dynamics
    simulation. ACS Med Chem Lett 2
    (4):280–284
    40. Schames JR, Henchman RH, Siegel JS, Sotrif-
    fer CA, Ni H, McCammon A (2004) Discovery
    of a novel binding trench in HIV integrase. J
    Med Chem 47(8):1879–1881
    41. Durrant JD, Keranen H, Wilson BA, McCam-
    mon JA (2010) Computational identification
    of uncharacterized cruzain binding sites.
    PLoS Negl Trop Dis 4(5):e676
    42. Grant BJ, Lukman S, Hocker HJ et al (2011)
    Novel allosteric sites on Ras for lead genera-
    tion. PLoS One 6(10):e25711
    43. Schmidtke P, Bidon Chanal A, Luque FJ, Barril
    X (2011) MDpocket: open-source cavity
    detection and characterization on molecular
    dynamics trajectories. Bioinformatics 27
    (23):3276–3285
    44. Grove LE, Hall DR, Beglov D, Vajda S, Koza-
    kov D (2013) FTFlex: accounting for binding
    site flexibility to improve fragment-based iden-
    tification of druggable hot spots. Bioinformat-
    ics 29(9):1218–1219
    45. De Vivo M, Masetti M, Bottegoni G, Cavalli A
    (2016) Role of molecular dynamics and related
    methods in drug discovery. J Med Chem 59
    (9):4035–4061
    46. Lukman S, Nguyen MN, Sim K, Teo JC (2017)
    Discovery of Rab1 binding sites using an
    ensemble of clustering methods. Proteins 85
    (5):859–871
    47. Lee DD, Seung HS (1999) Learning the parts
    of objects by non-negative matrix factorization.
    Nature 401(6755):788–791
    48. Hyvarinen A, Oja E (2000) Independent com-
    ponent analysis: algorithms and applications.
    Neural Netw 13(4–5):411–430


102 Tianhua Feng and Khaled Barakat

Free download pdf