Computational Drug Discovery and Design

(backadmin) #1

  1. Ortiz-Sanchez JM, Nichols SE, Sayyah J,
    Brown JH, McCammon JA, Grant BJ (2012)
    Identification of potential small molecule bind-
    ing pockets on rho family GTPases. PLoS One
    7(7):e40809

  2. Sugita Y, Okamoto Y (2000) Replica-exchange
    multicanonical algorithm and multicanonical
    replica-exchange method for simulating sys-
    tems with rough energy landscape. Chem
    Phys Lett 329(3–4):261–270

  3. Voter AF (1997) Hyperdynamics: accelerated
    molecular dynamics of infrequent events. Phys
    Rev Lett 78(20):3908–3911

  4. Kerrigan JE (2013) Molecular dynamics simu-
    lations in drug design. Methods Mol Biol
    993:95–113

  5. Mortier J, Rakers C, Bermudez M, Murgueitio
    MS, Riniker S, Wolber G (2015) The impact of
    molecular dynamics on drug design: applica-
    tions for the characterization of ligand-
    macromolecule complexes. Drug Discov
    Today 20(6):686–702

  6. Zhao H, Caflisch A (2015) Molecular dynam-
    ics in drug design. Eur J Med Chem 91:4–14

  7. Li H, Kasam V, Tautermann CS, Seeliger D,
    Vaidehi N (2014) Computational method to
    identify druggable binding sites that target
    protein-protein interactions. J Chem Inf
    Model 54(5):1391–1400

  8. Alvarez-Garcia D, Barril X (2014) Molecular
    simulations with solvent competition quantify
    water displaceability and provide accurate inter-
    action maps of protein binding sites. J Med
    Chem 57(20):8530–8539

  9. Guvench O, MacKerell AD Jr (2009) Compu-
    tational fragment-based binding site identifica-
    tion by ligand competitive saturation. PLoS
    Comput Biol 5(7):e1000435

  10. Lexa KW, Carlson HA (2011) Full protein
    flexibility is essential for proper hot-spot
    mapping. J Am Chem Soc 133(2):200–202

  11. Raman EP, Yu W, Lakkaraju SK, MacKerell AD
    Jr (2013) Inclusion of multiple fragment types
    in the site identification by ligand competitive


saturation (SILCS) approach. J Chem Inf
Model 53(12):3384–3398


  1. Beuming T, Che Y, Abel R, Kim B,
    Shanmugasundaram V, Sherman W (2012)
    Thermodynamic analysis of water molecules at
    the surface of proteins and applications to
    binding site prediction and characterization.
    Proteins 80(3):871–883

  2. Masukawa KM, Kollman PA, Kuntz ID (2003)
    Investigation of neuraminidase-substrate rec-
    ognition using molecular dynamics and free
    energy calculations. J Med Chem 46
    (26):5628–5637

  3. Landon MR, Amaro RE, Baron R et al (2008)
    Novel druggable hot spots in avian influenza
    neuraminidase H5N1 revealed by computa-
    tional solvent mapping of a reduced and repre-
    sentative receptor ensemble. Chem Biol Drug
    Des 71(2):106–116

  4. Shu M, Lin Z, Zhang Y, Wu Y, Mei H, Jiang Y
    (2011) Molecular dynamics simulation of osel-
    tamivir resistance in neuraminidase of avian
    influenza H5N1 virus. J Mol Model 17
    (3):587–592

  5. Dror RO, Pan AC, Arlow DH et al (2011)
    Pathway and mechanism of drug binding to
    G-protein-coupled receptors. Proc Natl Acad
    Sci U S A 108(32):13118–13123

  6. Overington JP, Al-Lazikani B, Hopkins AL
    (2006) Opinion - how many drug targets are
    there? Nat Rev Drug Discov 5(12):993–996

  7. Kappel K, Miao Y, McCammon JA (2015)
    Accelerated molecular dynamics simulations
    of ligand binding to a muscarinic G-protein-
    coupled receptor. Q Rev Biophys 48
    (4):479–487

  8. Cimermancic P, Weinkam P, Rettenmaier TJ
    (2016) CryptoSite: expanding the druggable
    proteome by characterization and prediction
    of cryptic binding sites. J Mol Biol 428
    (4):709–719

  9. Petros AM, Olejniczak ET, Fesik SW (2004)
    Structural biology of the Bcl-2 family of pro-
    teins. Biochim Biophys Acta 1644(2–3):83–94


Prediction of Druggable Binding Sites 103
Free download pdf