Computational Drug Discovery and Design

(backadmin) #1
simulations. Proc Natl Acad Sci
112:7454–7459


  1. Kozakov D, Grove LE, Hall DR et al (2015)
    The FTMap family of web servers for deter-
    mining and characterizing ligand binding hot
    spots of proteins. Nat Protoc 10:733–755

  2. Halgren T (2009) Identifying and character-
    izing binding sites and assessing druggability.
    J Chem Inf Model 49:377–389

  3. Radoux CJ, Olsson TSG, Pitt WR et al (2016)
    Identifying interactions that determine frag-
    ment binding at protein hotspots. J Med
    Chem 59:4314–4325

  4. Schames JR, Henchman RH, Siegel JS et al
    (2004) Discovery of a novel binding trench in
    HIV integrase. J Med Chem 47:1879–1881

  5. Frembgen-Kesner T, Elcock AH (2006)
    Computational sampling of a cryptic drug
    binding site in a protein receptor: explicit sol-
    vent molecular dynamics and inhibitor dock-
    ing to p38 MAP kinase. J Mol Biol
    359:202–214

  6. Eyrisch S, Helms V (2007) Transient pockets
    on protein surfaces involved in proteinpro-
    tein interaction. J Med Chem 50:3457–3464

  7. Tan YS, S ́ledz ́P, Lang S et al (2012) Using
    ligand-mapping simulations to design a ligand
    selectively targeting a cryptic surface pocket of
    polo-like kinase 1. Angew Chem Int Ed
    51:10078–10081

  8. Kunze J, Todoroff N, Schneider P et al (2014)
    Targeting dynamic pockets of HIV-1 protease
    by structure-based computational screening
    for allosteric inhibitors. J Chem Inf Model
    54:987–991

  9. Pietro OD, Jua ́rez-Jime ́nez J, Mun ̃oz-Tor-
    rero D et al (2017) Unveiling a novel tran-
    sient druggable pocket in BACE-1 through
    molecular simulations: conformational analy-
    sis and binding mode of multisite inhibitors.
    PLoS One 12:e0177683

  10. Bowman GR, Geissler PL (2012) Equilibrium
    fluctuations of a single folded protein reveal a
    multitude of potential cryptic allosteric sites.
    Proc Natl Acad Sci 109:11681–11686

  11. Yang C-Y (2015) Identification of potential
    small molecule allosteric modulator sites on
    IL-1R1 ectodomain using accelerated confor-
    mational sampling method. PLoS One 10:
    e0118671

  12. Bowman GR, Bolin ER, Hart KM et al (2015)
    Discovery of multiple hidden allosteric sites
    by combining Markov state models and
    experiments. Proc Natl Acad Sci
    112:2734–2739

  13. Hart KM, Moeder KE, Ho CMW et al (2017)
    Designing small molecules to target cryptic


pockets yields both positive and negative allo-
steric modulators. PLoS One 12:e0178678


  1. Seco J, Luque FJ, Barril X (2009) Binding site
    detection and druggability index from first
    principles. J Med Chem 52:2363–2371

  2. Guvench O, MacKerell AD (2009) Computa-
    tional fragment-based binding site identifica-
    tion by ligand competitive saturation. PLoS
    Comput Biol 5:e1000435

  3. Raman EP, Yu W, Lakkaraju SK et al (2013)
    Inclusion of multiple fragment types in the
    site identification by ligand competitive satu-
    ration (SILCS) approach. J Chem Inf Model
    53:3384–3398

  4. Alvarez-Garcia D, Barril X (2014) Molecular
    simulations with solvent competition quantify
    water displaceability and provide accurate
    interaction maps of protein binding sites. J
    Med Chem 57(20):8530–8539

  5. Kimura SR, Hu HP, Ruvinsky AM et al
    (2017) Deciphering cryptic binding sites on
    proteins by mixed-solvent molecular dynam-
    ics. J Chem Inf Model 57:1388–1401

  6. Kalenkiewicz A, Grant BJ, Yang C-Y (2015)
    Enrichment of druggable conformations from
    apo protein structures using cosolvent-
    accelerated molecular dynamics. Biology
    4:344–366

  7. Oleinikovas V, Saladino G, Cossins BP et al
    (2016) Understanding cryptic pocket forma-
    tion in protein targets by enhanced sampling
    simulations. J Am Chem Soc
    138:14257–14263

  8. Abskharon RNN, Giachin G, Wohlkonig A
    et al (2014) Probing the N-terminalβ-sheet
    conversion in the crystal structure of the
    human prion protein bound to a nanobody.
    J Am Chem Soc 136:937–944

  9. Lawson ADG (2014) Antibody fragments
    defining biologically relevant conformations
    of target proteins. Antibodies 3:289–302

  10. Ghosh E, Kumari P, Jaiman D et al (2015)
    Methodological advances: the unsung heroes
    of the GPCR structural revolution. Nat Rev
    Mol Cell Biol 16:69–81

  11. Huang W, Manglik A, Venkatakrishnan AJ
    et al (2015) Structural insights intoμ-opioid
    receptor activation. Nature 524:315–321

  12. Staus DP, Strachan RT, Manglik A et al
    (2016) Allosteric nanobodies reveal the
    dynamic range and diverse mechanisms of G-
    protein-coupled receptor activation. Nature
    535:448–452

  13. Sounier R, Mas C, Steyaert J et al (2015)
    Propagation of conformational changes dur-
    ing μ-opioid receptor activation. Nature
    524:375–378


Computational Study of Protein Conformational Transitions 361
Free download pdf