Computational Drug Discovery and Design

(backadmin) #1
milliseconds simulations concur with aniso-
tropic network model predictions. J Chem
Phys 139:121912


  1. Lockless SW, Ranganathan R (1999) Evolu-
    tionarily conserved pathways of energetic
    connectivity in protein families. Science
    286:295–299

  2. Su ̈el GM, Lockless SW, Wall MA et al (2003)
    Evolutionarily conserved networks of residues
    mediate allosteric communication in proteins.
    Nat Struct Mol Biol 10:59–69

  3. Halabi N, Rivoire O, Leibler S et al (2009)
    Protein sectors: evolutionary units of three-
    dimensional structure. Cell 138:774–786

  4. McLaughlin RN, Poelwijk FJ Jr, Raman A
    et al (2012) The spatial architecture of protein
    function and adaptation. Nature
    491:138–142

  5. Novinec M, KorencˇM, Caflisch A et al (2014)
    A novel allosteric mechanism in the cysteine
    peptidase cathepsin K discovered by compu-
    tational methods. Nat Commun 5:4287

  6. Bryngelson JD, Wolynes PG (1987) Spin
    glasses and the statistical mechanics of protein
    folding. Proc Natl Acad Sci U S A
    84:7524–7528

  7. Ferreiro DU, Hegler JA, Komives EA et al
    (2007) Localizing frustration in native pro-
    teins and protein assemblies. Proc Natl Acad
    Sci U S A 104:19819–19824

  8. Papoian GA, Ulander J, Wolynes PG (2003)
    Role of water mediated interactions in pro-
    teinprotein recognition landscapes. J Am
    Chem Soc 125:9170–9178

  9. Davtyan A, Schafer NP, Zheng W et al (2012)
    AWSEM-MD: protein structure prediction
    using coarse-grained physical potentials and
    bioinformatically based local structure bias-
    ing. J Phys Chem B 116:8494–8503

  10. Jenik M, Parra RG, Radusky LG et al (2012)
    Protein frustratometer: a tool to localize ener-
    getic frustration in protein molecules. Nucleic
    Acids Res 40:W348–W351

  11. Parra RG, Schafer NP, Radusky LG et al
    (2016) Protein frustratometer 2: a tool to
    localize energetic frustration in protein mole-
    cules, now with electrostatics. Nucleic Acids
    Res 44:W356–W360

  12. Ferreiro DU, Hegler JA, Komives EA et al
    (2011) On the role of frustration in the
    energy landscapes of allosteric proteins. Proc
    Natl Acad Sci U S A 108:3499–3503

  13. van den Bedem H, Bhabha G, Yang K et al
    (2013) Automated identification of func-
    tional dynamic networks from X-ray crystal-
    lography. Nat Methods 10:896–902
    154. Boehr DD, Schnell JR, McElheny D et al
    (2013) A distal mutation perturbs dynamic
    amino acid networks in dihydrofolate reduc-
    tase. Biochemistry 52:4605–4619
    155. McClendon CL, Friedland G, Mobley DL
    et al (2009) Quantifying correlations between
    allosteric sites in thermodynamic ensembles. J
    Chem Theory Comput 5:2486–2502
    156. Cembran A, Masterson LR, McClendon CL
    et al (2012) Conformational equilibrium of
    n-myristoylated camp-dependent protein
    kinase a by molecular dynamics simulations.
    Biochemistry 51:10186–10196
    157. Wan X, Ma Y, McClendon CL et al (2013) Ab
    Initio modeling and experimental assessment
    of Janus Kinase 2 (JAK2) kinase-pseudokinase
    complex structure. PLoS Comput Biol 9:
    e1003022
    158. Meng H, McClendon CL, Dai Z et al (2016)
    Discovery of novel 15-lipoxygenase activators
    to shift the human arachidonic acid metabolic
    network toward inflammation resolution. J
    Med Chem 59:4202–4209
    159. Sethi A, Eargle J, Black AA et al (2009) Dyna-
    mical networks in tRNA: protein complexes.
    Proc Natl Acad Sci U S A 106:6620–6625
    160. McClendon CL, Kornev AP, Gilson MK et al
    (2014) Dynamic architecture of a protein
    kinase. Proc Natl Acad Sci U S A 111:
    E4623–E4631
    161. Ahuja LG, Kornev AP, McClendon CL et al
    (2017) Mutation of a kinase allosteric node
    uncouples dynamics linked to phosphotrans-
    fer. Proc Natl Acad Sci U S A 114:
    E931–E940
    162. Kim J, Ahuja LG, Chao FA et al (2017) A
    dynamic hydrophobic core orchestrates allo-
    stery in protein kinases. Sci Adv 3:e1600663
    163. Armenta-Medina D, Pe ́rez-Rueda E, Segovia
    L (2011) Identification of functional motions
    in the adenylate kinase (ADK) protein family
    by computational hybrid approaches. Pro-
    teins 79:1662–1671
    164. Bakan A, Dutta A, Mao W et al (2014) Evol
    and ProDy for bridging protein sequence
    evolution and structural dynamics. Bioinfor-
    matics 30:2681–2683
    165. Skjærven L, Yao XQ, Scarabelli G et al (2014)
    Integrating protein structural dynamics and
    evolutionary analysis with Bio3D. BMC Bio-
    informatics 15:399
    166. Adcock SA, McCammon JA (2006) Molecu-
    lar dynamics: survey of methods for simulat-
    ing the activity of proteins. Chem Rev
    106:1589–1615
    167. Genheden S, Ryde U (2012) Will molecular
    dynamics simulations of proteins ever reach


364 Benjamin P. Cossins et al.

Free download pdf